laverdes commited on
Commit
9b714ad
·
verified ·
1 Parent(s): e235492

feat: base tools script for LangGraph Gala agent

Browse files
Files changed (1) hide show
  1. tools.py +40 -54
tools.py CHANGED
@@ -1,56 +1,42 @@
1
- from smolagents import DuckDuckGoSearchTool
2
- from smolagents import Tool
3
  import random
4
- from huggingface_hub import list_models
5
-
6
-
7
- # Initialize the DuckDuckGo search tool
8
- #search_tool = DuckDuckGoSearchTool()
9
-
10
-
11
- class WeatherInfoTool(Tool):
12
- name = "weather_info"
13
- description = "Fetches dummy weather information for a given location."
14
- inputs = {
15
- "location": {
16
- "type": "string",
17
- "description": "The location to get weather information for."
18
- }
19
- }
20
- output_type = "string"
21
-
22
- def forward(self, location: str):
23
- # Dummy weather data
24
- weather_conditions = [
25
- {"condition": "Rainy", "temp_c": 15},
26
- {"condition": "Clear", "temp_c": 25},
27
- {"condition": "Windy", "temp_c": 20}
28
- ]
29
- # Randomly select a weather condition
30
- data = random.choice(weather_conditions)
31
- return f"Weather in {location}: {data['condition']}, {data['temp_c']}°C"
32
-
33
- class HubStatsTool(Tool):
34
- name = "hub_stats"
35
- description = "Fetches the most downloaded model from a specific author on the Hugging Face Hub."
36
- inputs = {
37
- "author": {
38
- "type": "string",
39
- "description": "The username of the model author/organization to find models from."
40
- }
41
- }
42
- output_type = "string"
43
-
44
- def forward(self, author: str):
45
- try:
46
- # List models from the specified author, sorted by downloads
47
- models = list(list_models(author=author, sort="downloads", direction=-1, limit=1))
48
-
49
- if models:
50
- model = models[0]
51
- return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads."
52
- else:
53
- return f"No models found for author {author}."
54
- except Exception as e:
55
- return f"Error fetching models for {author}: {str(e)}"
56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import random
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ from huggingface_hub import list_models
4
+ from langchain.tools import Tool
5
+
6
+
7
+ def get_weather_info(location: str) -> str:
8
+ weather_conditions = [
9
+ {"condition": "Rainy", "temp_c": 15},
10
+ {"condition": "Clear", "temp_c": 25},
11
+ {"condition": "Windy", "temp_c": 20}
12
+ ]
13
+ # Randomly select a weather condition
14
+ data = random.choice(weather_conditions)
15
+ return f"Weather in {location}: {data['condition']}, {data['temp_c']}°C"
16
+
17
+
18
+ weather_info_tool = Tool(
19
+ name="weather_info",
20
+ func=get_weather_info,
21
+ description="Fetches dummy weather information for a given location."
22
+ )
23
+
24
+ def get_hub_stats(author: str) -> str:
25
+ try:
26
+ # List models from the specified author, sorted by downloads
27
+ models = list(list_models(author=author, sort="downloads", direction=-1, limit=1))
28
+
29
+ if models:
30
+ model = models[0]
31
+ return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads."
32
+ else:
33
+ return f"No models found for author {author}."
34
+ except Exception as e:
35
+ return f"Error fetching models for {author}: {str(e)}"
36
+
37
+
38
+ hub_stats_tool = Tool(
39
+ name="hub_stats",
40
+ func=get_hub_stats,
41
+ description="Fetches the most downloaded model from a specific author on the Hugging Face Hub."
42
+ )