Spaces:
Sleeping
Sleeping
import os | |
import logging | |
from typing import TypedDict, Annotated | |
from langgraph.graph.message import add_messages | |
from langchain_core.messages import AnyMessage, HumanMessage, AIMessage | |
from langchain_openai import ChatOpenAI | |
from langgraph.prebuilt import ToolNode | |
from langgraph.graph import START, StateGraph | |
from langgraph.prebuilt import tools_condition | |
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace | |
from smolagents import gradio_ui | |
from dotenv import load_dotenv | |
from retriever import guest_info_tool | |
from tools import weather_info_tool, hub_stats_tool | |
import gradio_ui_langgraph | |
# logging.basicConfig(level=logging.DEBUG) | |
load_dotenv() | |
# Generate the chat interface, and append the tools | |
tools = [guest_info_tool, weather_info_tool, hub_stats_tool] | |
llm = ChatOpenAI(model="gpt-4o") | |
llm_with_tools = llm.bind_tools(tools, parallel_tool_calls=False) | |
""" | |
llm = HuggingFaceEndpoint( | |
repo_id="Qwen/Qwen2.5-Coder-32B-Instruct", | |
huggingfacehub_api_token=os.environ["HF_TOKEN"], # HUGGINGFACEHUB_API_TOKEN | |
) | |
chat = ChatHuggingFace(llm=llm, verbose=True) | |
chat_with_tools = chat.bind_tools(tools) | |
""" | |
# Generate the AgentState and Agent graph | |
class AgentState(TypedDict): | |
messages: Annotated[list[AnyMessage], add_messages] | |
def assistant(state: AgentState): | |
return { | |
"messages": [llm_with_tools.invoke(state["messages"])], # or chat_with_tools | |
} | |
## The graph | |
builder = StateGraph(AgentState) | |
# Define nodes: these do the work | |
builder.add_node("assistant", assistant) | |
builder.add_node("tools", ToolNode(tools)) | |
# Define edges: these determine how the control flow moves | |
builder.add_edge(START, "assistant") | |
builder.add_conditional_edges( | |
"assistant", | |
# If the latest message requires a tool, route to tools | |
# Otherwise, provide a direct response | |
tools_condition, | |
) | |
builder.add_edge("tools", "assistant") | |
alfred = builder.compile() | |
gradio_ui_langgraph.GradioUI(alfred).launch() |