Spaces:
Sleeping
Sleeping
feat: basic tool-use langchain agent besides langgraph
Browse files- basic_agent.py +156 -116
basic_agent.py
CHANGED
@@ -8,13 +8,9 @@ from rich.markdown import Markdown
|
|
8 |
from rich.json import JSON
|
9 |
|
10 |
from typing import TypedDict, Sequence, Annotated
|
11 |
-
from langchain_core.messages import BaseMessage
|
12 |
-
from langgraph.graph.message import add_messages
|
13 |
-
from langgraph.graph import StateGraph, START, END
|
14 |
from langchain_openai import ChatOpenAI
|
15 |
-
|
16 |
-
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
|
17 |
-
from tqdm import tqdm
|
18 |
|
19 |
|
20 |
def print_conversation(messages):
|
@@ -22,18 +18,55 @@ def print_conversation(messages):
|
|
22 |
|
23 |
for msg in messages:
|
24 |
role = msg.get("role", "unknown").capitalize()
|
|
|
25 |
content = msg.get("content", "")
|
26 |
|
27 |
try:
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
except (json.JSONDecodeError, TypeError):
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
panel = Panel(
|
34 |
rendered_content,
|
35 |
title=f"[bold blue]{role}[/]",
|
36 |
-
border_style=
|
37 |
expand=True
|
38 |
)
|
39 |
|
@@ -43,18 +76,44 @@ def print_conversation(messages):
|
|
43 |
def generate_final_answer(qa: dict[str, str]) -> str:
|
44 |
"""Invokes gpt-4o-mini to extract generate a final answer based on the content query, response, and metadata"""
|
45 |
|
46 |
-
final_answer_llm = ChatOpenAI(model="gpt-4o", temperature=0)
|
47 |
|
48 |
system_prompt = (
|
49 |
-
"You will
|
50 |
-
"
|
51 |
-
|
52 |
-
"
|
53 |
-
"
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
)
|
56 |
|
57 |
system_message = SystemMessage(content=system_prompt)
|
|
|
|
|
|
|
|
|
58 |
messages = [
|
59 |
system_message,
|
60 |
HumanMessage(content=f'Generate the final answer for the following query:\n\n{json.dumps(qa)}')
|
@@ -63,124 +122,105 @@ def generate_final_answer(qa: dict[str, str]) -> str:
|
|
63 |
response = final_answer_llm.invoke(messages)
|
64 |
|
65 |
return response.content
|
66 |
-
|
67 |
|
68 |
-
class AgentState(TypedDict):
|
69 |
-
messages: Annotated[Sequence[BaseMessage], add_messages]
|
70 |
|
71 |
-
|
72 |
-
class BasicOpenAIAgentWorkflow:
|
73 |
"""Basic custom class from an agent prompted for tool-use pattern"""
|
74 |
|
75 |
def __init__(self, tools: list, model='gpt-4o', backstory:str="", streaming=False):
|
76 |
-
self.name = "
|
77 |
self.tools = tools
|
78 |
-
self.llm = ChatOpenAI(model=model, temperature=0, streaming=streaming)
|
79 |
-
self.
|
80 |
-
self.history = []
|
81 |
-
self.history_messages = [] # Store messages in LangChain format
|
82 |
self.backstory = backstory if backstory else "You are a helpful assistant that can use tools to answer questions. Your name is Gaia."
|
83 |
|
84 |
-
role_message = {'role': 'system', 'content': self.backstory}
|
85 |
-
self.history.append(role_message)
|
86 |
-
|
87 |
-
|
88 |
-
def _call_llm(self, state: AgentState):
|
89 |
-
"""invokes the assigned llm"""
|
90 |
-
return {'messages': [self.llm.invoke(state['messages'])]}
|
91 |
-
|
92 |
-
|
93 |
-
def _convert_history_to_messages(self):
|
94 |
-
"""Convert self.history to LangChain-compatible messages"""
|
95 |
-
converted = []
|
96 |
-
for msg in self.history:
|
97 |
-
content = msg['content']
|
98 |
-
|
99 |
-
if not isinstance(content, str):
|
100 |
-
raise ValueError(f"Expected string content, got: {type(content)} — {content}")
|
101 |
-
|
102 |
-
if msg['role'] == 'user':
|
103 |
-
converted.append(HumanMessage(content=content))
|
104 |
-
elif msg['role'] == 'assistant':
|
105 |
-
converted.append(AIMessage(content=content))
|
106 |
-
elif msg['role'] == 'system':
|
107 |
-
converted.append(SystemMessage(content=content))
|
108 |
-
else:
|
109 |
-
raise ValueError(f"Unknown role in message: {msg}")
|
110 |
-
self.history_messages = converted
|
111 |
-
|
112 |
|
113 |
def create_basic_tool_use_agent_state_graph(self, custom_tools_nm="tools"):
|
114 |
"""Binds tools, creates and compiles graph"""
|
115 |
-
self.llm = self.llm.bind_tools(self.tools)
|
116 |
-
|
117 |
-
# Graph Init
|
118 |
-
graph = StateGraph(AgentState)
|
119 |
-
|
120 |
-
# Nodes
|
121 |
-
graph.add_node('agent', self._call_llm)
|
122 |
-
tools_node = ToolNode(self.tools)
|
123 |
-
graph.add_node(custom_tools_nm, tools_node)
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
user_message = {'role': 'user', 'content': query}
|
138 |
-
self.history.append(user_message)
|
139 |
-
|
140 |
-
# Ensure history has at least 1 message
|
141 |
-
if not self.history:
|
142 |
-
raise ValueError("History is empty. Cannot proceed.")
|
143 |
|
144 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
|
146 |
-
if not self.history_messages:
|
147 |
-
raise ValueError("Converted message history is empty. Something went wrong.")
|
148 |
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
-
|
153 |
-
final_answer_content = {
|
154 |
'query': query,
|
155 |
'response': response,
|
156 |
-
|
157 |
-
}
|
158 |
-
|
|
|
159 |
|
160 |
-
assistant_message = {'role': 'assistant', 'content': response}
|
161 |
-
self.history.append(assistant_message)
|
162 |
-
|
163 |
-
if verbose==2:
|
164 |
-
print_conversation(self.history)
|
165 |
-
elif verbose==1:
|
166 |
-
print_conversation([assistant_message])
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
return response
|
169 |
|
170 |
-
|
171 |
-
def
|
172 |
-
"""
|
173 |
-
|
174 |
-
self._convert_history_to_messages()
|
175 |
-
return {'messages': self.history_messages}
|
176 |
-
|
177 |
-
|
178 |
-
def chat_batch(self, queries=None, only_final_answer=False):
|
179 |
-
"""Send several simple agent calls to the llm using the compiled graph"""
|
180 |
-
if queries is None:
|
181 |
-
queries = []
|
182 |
-
for i, query in tqdm(enumerate(queries, start=1)):
|
183 |
-
if i == len(queries):
|
184 |
-
self.chat(query, verbose=2, only_final_answer=only_final_answer)
|
185 |
-
else:
|
186 |
-
self.chat(query, verbose=0, only_final_answer=only_final_answer)
|
|
|
8 |
from rich.json import JSON
|
9 |
|
10 |
from typing import TypedDict, Sequence, Annotated
|
11 |
+
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage, SystemMessage
|
|
|
|
|
12 |
from langchain_openai import ChatOpenAI
|
13 |
+
|
|
|
|
|
14 |
|
15 |
|
16 |
def print_conversation(messages):
|
|
|
18 |
|
19 |
for msg in messages:
|
20 |
role = msg.get("role", "unknown").capitalize()
|
21 |
+
|
22 |
content = msg.get("content", "")
|
23 |
|
24 |
try:
|
25 |
+
if isinstance(content, str):
|
26 |
+
content = json.loads(content)
|
27 |
+
|
28 |
+
elif isinstance(content, dict) and 'output' in content.keys():
|
29 |
+
if isinstance(content['output'], HumanMessage):
|
30 |
+
content['output'] = content['output'].content
|
31 |
+
|
32 |
+
elif isinstance(content, HumanMessage):
|
33 |
+
content = content.content
|
34 |
+
|
35 |
+
rendered_content = JSON.from_data(content)
|
36 |
+
|
37 |
except (json.JSONDecodeError, TypeError):
|
38 |
+
try:
|
39 |
+
rendered_content = Markdown(content.strip())
|
40 |
+
except AttributeError:
|
41 |
+
# from gemini
|
42 |
+
try:
|
43 |
+
rendered_content = {
|
44 |
+
'query': content.get('query', 'QueryKeyNotFound').content[0]['text'],
|
45 |
+
'output': content.get('output', 'OutputKeyNotFound'),
|
46 |
+
}
|
47 |
+
rendered_content = JSON.from_data(rendered_content)
|
48 |
+
|
49 |
+
except Exception as e:
|
50 |
+
print(f"Failed to render content for role: {role}. Content: {content}")
|
51 |
+
print("Error:", e)
|
52 |
+
|
53 |
+
|
54 |
+
border_style_color = "red"
|
55 |
+
if "Assistant" in role:
|
56 |
+
border_style_color = "magenta"
|
57 |
+
elif "User" in role:
|
58 |
+
border_style_color = "green"
|
59 |
+
elif "System" in role:
|
60 |
+
border_style_color = "blue"
|
61 |
+
elif "Tool" in role:
|
62 |
+
border_style_color = "yellow"
|
63 |
+
elif "Token" in role:
|
64 |
+
border_style_color = "white"
|
65 |
|
66 |
panel = Panel(
|
67 |
rendered_content,
|
68 |
title=f"[bold blue]{role}[/]",
|
69 |
+
border_style=border_style_color,
|
70 |
expand=True
|
71 |
)
|
72 |
|
|
|
76 |
def generate_final_answer(qa: dict[str, str]) -> str:
|
77 |
"""Invokes gpt-4o-mini to extract generate a final answer based on the content query, response, and metadata"""
|
78 |
|
79 |
+
final_answer_llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
|
80 |
|
81 |
system_prompt = (
|
82 |
+
"You will be given a JSON object containing a user's query, a response from an AI assistant, and optional metadata. "
|
83 |
+
"Your task is to extract and return a final answer to the query as a plain string, strictly suitable for exact match evaluation. "
|
84 |
+
|
85 |
+
"Do NOT answer the query yourself. Use the response as the source of truth. "
|
86 |
+
"Use the query only as context to interpret the response and extract a final, normalized answer. "
|
87 |
+
|
88 |
+
"Your output must be:\n"
|
89 |
+
"- A **single plain string** with **no prefixes, labels, or explanations**.\n"
|
90 |
+
"- Suitable for exact string comparison.\n"
|
91 |
+
"- Clean and deterministic: no variation in formatting, casing, or punctuation."
|
92 |
+
|
93 |
+
"Special rules:\n"
|
94 |
+
"- If the response shows inability to process attached media (images, audio, video), return: **'File not found'**.\n"
|
95 |
+
"- If the response is a list of search results aggregate the information before constructing an answer"
|
96 |
+
"- If the query is quantitative (How many...?), **aggregate the results of the tool(s) call(s) and return the numeric answer** only.\n"
|
97 |
+
"- If the query is unanswerable from the response, return: **'No answer found: <brief reason>'**."
|
98 |
+
|
99 |
+
"Examples:\n"
|
100 |
+
"- Query: 'What’s in the attached image?'\n"
|
101 |
+
" Response: 'I'm unable to view images directly...'\n"
|
102 |
+
" Output: 'File not found'\n\n"
|
103 |
+
"- Query: 'What’s the total population of X'\n"
|
104 |
+
" Response: '{title: demographics of X, content: 1. City A: 2M, 2. City B: 3M, title: history of X, content: currently there are Y number of inhabitants in X...'\n"
|
105 |
+
" Output: '5000000'\n"
|
106 |
+
|
107 |
+
"Strictly follow these rules. Some final answers will require more analysis if the provided response. "
|
108 |
+
"You can reason to get to the answer but always consider the response as the base_knowledge (keep coherence)."
|
109 |
+
"Return only the final string answer. Do not include any other content."
|
110 |
)
|
111 |
|
112 |
system_message = SystemMessage(content=system_prompt)
|
113 |
+
|
114 |
+
if isinstance(qa['response']['query'], HumanMessage):
|
115 |
+
qa['response'] = qa['response']['output']
|
116 |
+
|
117 |
messages = [
|
118 |
system_message,
|
119 |
HumanMessage(content=f'Generate the final answer for the following query:\n\n{json.dumps(qa)}')
|
|
|
122 |
response = final_answer_llm.invoke(messages)
|
123 |
|
124 |
return response.content
|
|
|
125 |
|
|
|
|
|
126 |
|
127 |
+
class ToolAgent:
|
|
|
128 |
"""Basic custom class from an agent prompted for tool-use pattern"""
|
129 |
|
130 |
def __init__(self, tools: list, model='gpt-4o', backstory:str="", streaming=False):
|
131 |
+
self.name = "GAIA Tool-Use Agent"
|
132 |
self.tools = tools
|
133 |
+
self.llm = ChatOpenAI(model=model, temperature=0, streaming=streaming, max_retries=5)
|
134 |
+
self.executor = None
|
|
|
|
|
135 |
self.backstory = backstory if backstory else "You are a helpful assistant that can use tools to answer questions. Your name is Gaia."
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
def create_basic_tool_use_agent_state_graph(self, custom_tools_nm="tools"):
|
139 |
"""Binds tools, creates and compiles graph"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
tools_info = '\n\n'.join([f'{tool.name}: {tool.description}: {tool.args}' for tool in self.tools])
|
142 |
+
chatgpt_with_tools = self.llm.bind_tools(self.tools)
|
143 |
+
|
144 |
+
prompt_template = ChatPromptTemplate.from_messages(
|
145 |
+
[
|
146 |
+
("system", self.backstory),
|
147 |
+
MessagesPlaceholder(variable_name="history", optional=True),
|
148 |
+
("human", "{query}"),
|
149 |
+
MessagesPlaceholder(variable_name="agent_scratchpad"),
|
150 |
+
]
|
151 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
+
agent = create_tool_calling_agent(self.llm, self.tools, prompt_template)
|
154 |
+
self.executor = AgentExecutor(
|
155 |
+
agent=agent,
|
156 |
+
tools=self.tools,
|
157 |
+
early_stopping_method='force',
|
158 |
+
max_iterations=10
|
159 |
+
)
|
160 |
|
|
|
|
|
161 |
|
162 |
+
def chat(self, query:str, metadata):
|
163 |
+
"""Perform a single step in the conversation with the tool agent executor."""
|
164 |
+
if metadata is None:
|
165 |
+
metadata = {}
|
166 |
+
|
167 |
+
with_attachments = False
|
168 |
+
query_message = HumanMessage(content=query)
|
169 |
+
|
170 |
+
if "image_path" in metadata:
|
171 |
+
|
172 |
+
# Create a HumanMessage with image content
|
173 |
+
query_message = HumanMessage(
|
174 |
+
content=[
|
175 |
+
{"type": "text", "text": query},
|
176 |
+
{"type": "text", "text": f"image_path: {metadata['image_path']}"},
|
177 |
+
]
|
178 |
+
)
|
179 |
+
with_attachments = True
|
180 |
+
|
181 |
+
user_message = {'role': 'user', 'content': query if not with_attachments else query_message}
|
182 |
+
print_conversation([user_message])
|
183 |
+
|
184 |
+
response = self.executor.invoke({
|
185 |
+
"query": query if not with_attachments else query_message,
|
186 |
+
})
|
187 |
+
response_message = {'role': 'assistant', 'content': response}
|
188 |
+
print_conversation([response_message])
|
189 |
|
190 |
+
final_answer = generate_final_answer({
|
|
|
191 |
'query': query,
|
192 |
'response': response,
|
193 |
+
})
|
194 |
+
final_answer_message = {'role': 'Final Answer', 'content': final_answer}
|
195 |
+
print_conversation([final_answer_message])
|
196 |
+
return final_answer
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
+
def invoke(self, q_data):
|
200 |
+
"""Invoke the executor input data"""
|
201 |
+
query = q_data.get("query", "")
|
202 |
+
metadata = q_data.get("metadata", None)
|
203 |
+
|
204 |
+
try:
|
205 |
+
response = self.chat(query, metadata)
|
206 |
+
time.sleep(3)
|
207 |
+
except RateLimitError:
|
208 |
+
response = 'Rate limit error encountered. Retrying after a short pause...'
|
209 |
+
error_message = {'role': 'Rate-limit-hit', 'content': response}
|
210 |
+
print_conversation([error_message])
|
211 |
+
time.sleep(5)
|
212 |
+
|
213 |
+
try:
|
214 |
+
response = self.chat(query, metadata)
|
215 |
+
except RateLimitError:
|
216 |
+
response = 'Rate limit error encountered again. Skipping this query.'
|
217 |
+
error_message = {'role': 'Rate-limit-hit', 'content': response}
|
218 |
+
print_conversation([error_message])
|
219 |
+
|
220 |
+
print()
|
221 |
return response
|
222 |
|
223 |
+
|
224 |
+
def __call__(self, q_data):
|
225 |
+
"""Call the invoke method from the agent executor."""
|
226 |
+
return self.invoke(q_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|