import gradio as gr from diffusers import DiffusionPipeline import torch from diffusers import DDPMScheduler, UNet2DModel from PIL import Image import numpy as np def erzeuge(prompt): return pipeline(prompt).images # [0] # def erzeuge_komplex(prompt): # scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256") # model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda") # scheduler.set_timesteps(50) # sample_size = model.config.sample_size # noise = torch.randn((1, 3, sample_size, sample_size)).to("cuda") # input = noise # for t in scheduler.timesteps: # with torch.no_grad(): # noisy_residual = model(input, t).sample # prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample # input = prev_noisy_sample # image = (input / 2 + 0.5).clamp(0, 1) # image = image.cpu().permute(0, 2, 3, 1).numpy()[0] # image = Image.fromarray((image * 255).round().astype("uint8")) # return image # pipeline = DiffusionPipeline.from_pretrained("google/ddpm-cat-256") pipeline = DiffusionPipeline.from_pretrained("google/ddpm-celebahq-256") # pipeline.to("cuda") with gr.Blocks() as demo: with gr.Column(variant="panel"): with gr.Row(variant="compact"): text = gr.Textbox( label="Deine Beschreibung:", show_label=False, max_lines=1, placeholder="Bildbeschreibung", ) btn = gr.Button("erzeuge Bild") gallery = gr.Gallery( label="Erzeugtes Bild", show_label=False, elem_id="gallery" ) btn.click(erzeuge, inputs=[text], outputs=[gallery]) text.submit(erzeuge, inputs=[text], outputs=[gallery]) if __name__ == "__main__": demo.launch()