Spaces:
Sleeping
Sleeping
Commit
·
33d25b3
1
Parent(s):
5a50038
debug 12
Browse files
app.py
CHANGED
@@ -10,31 +10,29 @@ def erzeuge(prompt):
|
|
10 |
return pipeline(prompt).images # [0]
|
11 |
|
12 |
|
13 |
-
def erzeuge_komplex(prompt):
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
|
33 |
|
34 |
-
# pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2")
|
35 |
# pipeline = DiffusionPipeline.from_pretrained("google/ddpm-cat-256")
|
36 |
pipeline = DiffusionPipeline.from_pretrained("google/ddpm-celebahq-256")
|
37 |
-
|
38 |
# pipeline.to("cuda")
|
39 |
|
40 |
|
|
|
10 |
return pipeline(prompt).images # [0]
|
11 |
|
12 |
|
13 |
+
# def erzeuge_komplex(prompt):
|
14 |
+
# scheduler = DDPMScheduler.from_pretrained("google/ddpm-cat-256")
|
15 |
+
# model = UNet2DModel.from_pretrained("google/ddpm-cat-256").to("cuda")
|
16 |
+
# scheduler.set_timesteps(50)
|
17 |
|
18 |
+
# sample_size = model.config.sample_size
|
19 |
+
# noise = torch.randn((1, 3, sample_size, sample_size)).to("cuda")
|
20 |
+
# input = noise
|
21 |
|
22 |
+
# for t in scheduler.timesteps:
|
23 |
+
# with torch.no_grad():
|
24 |
+
# noisy_residual = model(input, t).sample
|
25 |
+
# prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
|
26 |
+
# input = prev_noisy_sample
|
27 |
|
28 |
+
# image = (input / 2 + 0.5).clamp(0, 1)
|
29 |
+
# image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
|
30 |
+
# image = Image.fromarray((image * 255).round().astype("uint8"))
|
31 |
+
# return image
|
32 |
|
33 |
|
|
|
34 |
# pipeline = DiffusionPipeline.from_pretrained("google/ddpm-cat-256")
|
35 |
pipeline = DiffusionPipeline.from_pretrained("google/ddpm-celebahq-256")
|
|
|
36 |
# pipeline.to("cuda")
|
37 |
|
38 |
|