from agno.agent import Agent from agno.models.openai import OpenAIChat from agno.team import Team from agno.tools.duckduckgo import DuckDuckGoTools from agno.models.ollama import Ollama from agno.models.groq import Groq import os chat=Groq(id='llama-3.3-70b-versatile') if os.getenv("GROQ_API_KEY") else Ollama(id="qwen2.5") # Create individual specialized agents researcher = Agent( name="Researcher", role="Expert at finding information by breaking the structure into components ie) architecture, code, algorithm, linux system", tools=[DuckDuckGoTools(fixed_max_results=3)], show_tool_calls=True, tool_call_limit=1, model=chat, #OpenAIChat("gpt-4o"), #debug_mode=True, ) engineer = Agent( name="Security Engineer", role="Security Expert at writing short, clear, engaging content for hands-on best practices, and common pitfalls with solution", model=chat, #OpenAIChat("gpt-4o"), ) # Create a team with these agents content_team = Team( name="Content Team", mode="coordinate", members=[researcher, engineer], instructions="You are a team of researchers and writers that work together to create high-quality content.", model=chat, #OpenAIChat("gpt-4o"), markdown=True, ) def bestPractice(topic): r = content_team.run(topic) return [m for m in r.messages if m.role == 'assistant'][-1].content if __name__=='__main__': from pprint import pprint from agno.utils.pprint import pprint_run_response r=content_team.run("Docker Containers") pprint_run_response(r, markdown=True) print([m for m in r.messages if m.role == 'assistant'][-1].content) print("") pprint(r.messages) # Run the team with a task #content_team.print_response("Create a common pitfalls with best practice article about application security for using Docker Containers")