import argparse

import os
# limit the number of cpus used by high performance libraries
# os.environ["OMP_NUM_THREADS"] = "8"
# os.environ["OPENBLAS_NUM_THREADS"] = "8"
# os.environ["MKL_NUM_THREADS"] = "8"
# os.environ["VECLIB_MAXIMUM_THREADS"] = "8"
# os.environ["NUMEXPR_NUM_THREADS"] = "8"
import platform
import sys
import numpy as np
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from numpy import random
from time import time
import pandas as pd


FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # yolov5 strongsort root directory
WEIGHTS = ROOT / 'weights'
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
if str(ROOT / 'yolov9') not in sys.path:
    sys.path.append(str(ROOT / 'yolov9'))  # add yolov5 ROOT to PATH
if str(ROOT / 'strong_sort') not in sys.path:
    sys.path.append(str(ROOT / 'strong_sort'))  # add strong_sort ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
from models.experimental import attempt_load
from models.common import DetectMultiBackend
from utils.dataloaders import LoadImages, LoadStreams, LoadScreenshots
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
                           increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from utils.torch_utils import select_device, time_sync, smart_inference_mode
from utils.plots import Annotator, colors, save_one_box
from strong_sort.utils.parser import get_config
from strong_sort.strong_sort import StrongSORT


VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv'  # include video suffixes


def plot_one_box(x, img, color=None, label=None, line_thickness=3):
    # Plots one bounding box on image img
    tl = line_thickness or round(0.002 * (img.shape[0] + img.shape[1]) / 2) + 1  # line/font thickness
    c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
    cv2.rectangle(img, c1, c2, color, thickness=tl, lineType=cv2.LINE_AA)
    if label:
        tf = max(tl - 1, 1)  # font thickness
        t_size = cv2.getTextSize(label, 0, fontScale=tl / 3, thickness=tf)[0]
        c2 = c1[0] + t_size[0], c1[1] - t_size[1] - 3
        cv2.rectangle(img, c1, c2, color, -1, cv2.LINE_AA)  # filled
        cv2.putText(img, label, (c1[0], c1[1] - 2), 0, tl / 3, [225, 255, 255], thickness=tf, lineType=cv2.LINE_AA)



def convert_to_int(tensor):
    return tensor.type(torch.int16).item()

@smart_inference_mode()
def run_strongsort(
        source='0',
        data = ROOT / 'data/coco.yaml',  # data.yaml path
        yolo_weights=WEIGHTS / 'yolo.pt',  # model.pt path(s),
        strong_sort_weights=WEIGHTS / 'osnet_x0_25_msmt17.pt',  # model.pt path,
        config_strongsort=ROOT / 'strong_sort/configs/strong_sort.yaml',
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/track',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
        vid_stride=1,  # video frame-rate stride
):

    source = str(source)
    save_img = not nosave and not source.endswith('.txt')  # save inference images
    is_file = Path(source).suffix[1:] in (VID_FORMATS)
    is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
    webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
    screenshot = source.lower().startswith('screen')

    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    if not isinstance(yolo_weights, list):  # single yolo model
        exp_name = Path(yolo_weights).stem
    elif type(yolo_weights) is list and len(yolo_weights) == 1:  # single models after --yolo_weights
        exp_name = Path(yolo_weights[0]).stem
        yolo_weights = Path(yolo_weights[0])
    else:  # multiple models after --yolo_weights
        exp_name = 'ensemble'
    exp_name = name if name else exp_name + "_" + Path(strong_sort_weights).stem
    save_dir = increment_path(Path(project) / exp_name, exist_ok=exist_ok)  # increment run
    save_dir = Path(save_dir)
    (save_dir / 'tracks' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(yolo_weights, device=device, dnn=dnn, data=data, fp16=half)
    stride, names, pt = model.stride, model.names, model.pt
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    
    # Dataloader
    bs = 1  # batch_size
    if webcam:
        view_img = check_imshow(warn=True)
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
        bs = len(dataset)
    elif screenshot:
        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
    vid_path, vid_writer,txt_path = [None] * bs, [None] * bs, [None] * bs
    
    
    # initialize StrongSORT
    cfg = get_config()
    cfg.merge_from_file(config_strongsort)

    # Create as many strong sort instances as there are video sources
    strongsort_list = []
    for i in range(bs):
        strongsort_list.append(
            StrongSORT(
                strong_sort_weights,
                device,
                half,
                max_dist=cfg.STRONGSORT.MAX_DIST,
                max_iou_distance=cfg.STRONGSORT.MAX_IOU_DISTANCE,
                max_age=cfg.STRONGSORT.MAX_AGE,
                n_init=cfg.STRONGSORT.N_INIT,
                nn_budget=cfg.STRONGSORT.NN_BUDGET,
                mc_lambda=cfg.STRONGSORT.MC_LAMBDA,
                ema_alpha=cfg.STRONGSORT.EMA_ALPHA,

            )
        )
        strongsort_list[i].model.warmup()
    outputs = [None] * bs
    
    colors = [[0, 0, 255], [255, 148, 0], [0, 255, 10], [0, 247, 250], [235,0,255]]
    #250, 247, 0
    # Run tracking
    model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))  # warmup
    seen, windows, dt,sdt = 0, [], (Profile(), Profile(), Profile(), Profile()),[0.0, 0.0, 0.0, 0.0]
    curr_frames, prev_frames = [None] * bs, [None] * bs
    frame_counts = []

    for frame_idx, (path, im, im0s, vid_cap, s) in enumerate(dataset):
        # s = ''
        t1 = time_sync()
        with dt[0]:
            im = torch.from_numpy(im).to(model.device)
            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
            im /= 255  # 0 - 255 to 0.0 - 1.0
            if len(im.shape) == 3:
                im = im[None]  # expand for batch dim
        t2 = time_sync()
        sdt[0] += t2 - t1

        # Inference
        with dt[1]:
            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
            pred = model(im, augment=augment, visualize=visualize)
            # pred = pred[0][1]
        t3 = time_sync()
        sdt[1] += t3 - t2

        # Apply NMS
        with dt[2]:
            pred = pred[0][1] if isinstance(pred[0], list) else pred[0]  # single model or ensemble
            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
        sdt[2] += time_sync() - t3
        
        # Second-stage classifier (optional)
        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

        counts = {}
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            seen += 1
            if webcam:  # bs >= 1
                p, im0, _ = path[i], im0s[i].copy(), dataset.count
                p = Path(p)  # to Path
                s += f'{i}: '
                # txt_file_name = p.name
                txt_file_name = p.stem + f'_{i}' # Unique text file name
                # save_path = str(save_dir / p.name) + str(i)  # im.jpg, vid.mp4, ...
                save_path = str(save_dir / p.stem) + f'_{i}'  # Unique video file name

            else:
                p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0)
                
                
                p = Path(p)  # to Path
                # video file
                if source.endswith(VID_FORMATS):
                    txt_file_name = p.stem
                    save_path = str(save_dir / p.name)  # im.jpg, vid.mp4, ...
                # folder with imgs
                else:
                    txt_file_name = p.parent.name  # get folder name containing current img
                    save_path = str(save_dir / p.parent.name)  # im.jpg, vid.mp4, ...

            curr_frames[i] = im0

            txt_path = str(save_dir / 'tracks' / txt_file_name)  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0, line_width=line_thickness, example=str(names))


            if cfg.STRONGSORT.ECC:  # camera motion compensation
                strongsort_list[i].tracker.camera_update(prev_frames[i], curr_frames[i])

            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string
                    counts[names[int(c)]] = n
                xywhs = xyxy2xywh(det[:, 0:4])
                confs = det[:, 4]
                clss = det[:, 5]

                # pass detections to strongsort
                t4 = time_sync()
                outputs[i] = strongsort_list[i].update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0)
                t5 = time_sync()
                sdt[3] += t5 - t4
            
                # Write results
                for j, (output, conf) in enumerate(zip(outputs[i], confs)):
                    xyxy = output[0:4]
                    id = output[4]
                    cls = output[5]
                    label = names[int(cls)]
                # for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        # line = (id , cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                        line = ( int(p.stem), frame_idx, id , cls, *xywh, conf) if save_conf else ( p.stem, frame_idx, cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as file:
                            file.write(('%g ' * len(line) + '\n') % line)

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else ( str(id) + ' ' + names[c] if hide_conf else f' { id } {names[c]} {conf:.2f}')
                        plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=2)
                    if save_crop:
                        save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

                frame_counts.append({'frame': frame_idx, 'counts': counts.copy()})
                # # draw boxes for visualization
                # if len(outputs[i]) > 0:
                #     for j, (output, conf) in enumerate(zip(outputs[i], confs)):
    
                #         bboxes = output[0:4]
                #         id = output[4]
                #         cls = output[5]

                #         if save_txt:
                #             # to MOT format
                #             bbox_left = output[0]
                #             bbox_top = output[1]
                #             bbox_w = output[2] - output[0]
                #             bbox_h = output[3] - output[1]
                #             # format video_name frame id xmin ymin width height score class 
                #             with open(txt_path + '.txt', 'a') as file:
                #                 file.write(f'{p.stem} {frame_idx} {id} {bbox_left} {bbox_top} {bbox_w} {bbox_h} {conf:.2f} {cls}\n')

                #         if save_img or save_crop or view_img:  # Add bbox to image
                #             c = int(cls)  # integer class
                #             id = int(id)  # integer id
                #             label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                #             plot_one_box(bboxes, im0, label=label, color=colors[int(cls)], line_thickness=2)
                #             if save_crop:
                #                 txt_file_name = txt_file_name if (isinstance(path, list) and len(path) > 1) else ''
                #                 save_one_box(bboxes, imc, file=save_dir / 'crops' / txt_file_name / names[c] / f'{id}' / f'{p.stem}.jpg', BGR=True)

                print(f'{s}Done. YOLO:({t3 - t2:.3f}s), StrongSORT:({t5 - t4:.3f}s)')

            else:
                strongsort_list[i].increment_ages()
                print('No detections')

            # Stream results
            im0 = annotator.result()


            if view_img:
                if platform.system() == 'Linux' and p not in windows:
                    windows.append(p)
                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc('m','p','4','v'), fps, (w, h))
                    vid_writer[i].write(im0)

            prev_frames[i] = curr_frames[i]

            
        # Print time (inference-only)
        LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
    
    flattened_counts = [
        {'frame': entry['frame'], 'label': label, 'count': count}
        for entry in frame_counts for label, count in entry['counts'].items()
    ]
    frame_counts_df = pd.DataFrame(flattened_counts)
    frame_counts_df['count'] = frame_counts_df['count'].apply(convert_to_int)
    counts_df = None
    # Print results
    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape, %.1fms StrongSORT' % tuple(1E3 * x / seen for x in sdt))
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(yolo_weights[0])  # update model (to fix SourceChangeWarning)
    return save_path, counts_df, frame_counts_df
def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--yolo-weights', nargs='+', type=str, default=WEIGHTS / 'yolov9.pt', help='model.pt path(s)')
    parser.add_argument('--strong-sort-weights', type=str, default=WEIGHTS / 'osnet_x0_25_msmt17.pt')
    parser.add_argument('--config-strongsort', type=str, default='strong_sort/configs/strong_sort.yaml')
    parser.add_argument('--source', type=str, default='0', help='file/dir/URL/glob, 0 for webcam')  
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
    parser.add_argument('--conf-thres', type=float, default=0.5, help='confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.5, help='NMS IoU threshold')
    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='show results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    # class 0 is person, 1 is bycicle, 2 is car... 79 is oven
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--visualize', action='store_true', help='visualize features')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default=ROOT / 'runs/track', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
    parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand

    return opt


def main(opt):
    # check_requirements(requirements=ROOT / 'requirements.txt', exclude=('tensorboard', 'thop'))
    run_strongsort(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)