FishEye8K / detect_deepsort.py
tuansunday05's picture
Update detect_deepsort.py
07c482c verified
raw
history blame
16.8 kB
import argparse
import os
import platform
import sys
from pathlib import Path
import math
import torch
import numpy as np
from deep_sort_pytorch.utils.parser import get_config
from deep_sort_pytorch.deep_sort import DeepSort
from collections import deque
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLO root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, smart_inference_mode
# def initialize_deepsort():
# # Create the Deep SORT configuration object and load settings from the YAML file
# cfg_deep = get_config()
# cfg_deep.merge_from_file("deep_sort_pytorch/configs/deep_sort.yaml")
# # Initialize the DeepSort tracker
# deepsort = DeepSort(cfg_deep.DEEPSORT.REID_CKPT,
# max_dist=cfg_deep.DEEPSORT.MAX_DIST,
# # min_confidence parameter sets the minimum tracking confidence required for an object detection to be considered in the tracking process
# min_confidence=cfg_deep.DEEPSORT.MIN_CONFIDENCE,
# #nms_max_overlap specifies the maximum allowed overlap between bounding boxes during non-maximum suppression (NMS)
# nms_max_overlap=cfg_deep.DEEPSORT.NMS_MAX_OVERLAP,
# #max_iou_distance parameter defines the maximum intersection-over-union (IoU) distance between object detections
# max_iou_distance=cfg_deep.DEEPSORT.MAX_IOU_DISTANCE,
# # Max_age: If an object's tracking ID is lost (i.e., the object is no longer detected), this parameter determines how many frames the tracker should wait before assigning a new id
# max_age=cfg_deep.DEEPSORT.MAX_AGE, n_init=cfg_deep.DEEPSORT.N_INIT,
# #nn_budget: It sets the budget for the nearest-neighbor search.
# nn_budget=cfg_deep.DEEPSORT.NN_BUDGET,
# use_cuda=False
# )
# return deepsort
#deepsort = initialize_deepsort()
data_deque = {}
def classNames():
cocoClassNames = ["Bus", "Bike", "Car", "Pedestrian", "Truck"
]
return cocoClassNames
className = classNames()
def colorLabels(classid):
if classid == 0: #Bus
color = (0, 0, 255)
elif classid == 1: #Bike 250, 247, 0
color = (0,148,255)
elif classid == 2: #Car
color = (0, 255, 10)
elif classid == 3: #Pedestrian
color = (250,247,0)
else: #Truck
color = (235,0,255)
return tuple(color)
def draw_boxes(frame, bbox_xyxy, draw_trails, identities=None, categories=None, offset=(0,0)):
height, width, _ = frame.shape
for key in list(data_deque):
if key not in identities:
data_deque.pop(key)
for i, box in enumerate(bbox_xyxy):
x1, y1, x2, y2 = [int(i) for i in box]
x1 += offset[0]
y1 += offset[0]
x2 += offset[0]
y2 += offset[0]
#Find the center point of the bounding box
center = int((x1+x2)/2), int((y1+y2)/2)
cat = int(categories[i]) if categories is not None else 0
color = colorLabels(cat)
#color = [255,0,0]#compute_color_labels(cat)
id = int(identities[i]) if identities is not None else 0
# create new buffer for new object
if id not in data_deque:
data_deque[id] = deque(maxlen= 64)
data_deque[id].appendleft(center)
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
name = className[cat]
label = str(id) + ":" + name
text_size = cv2.getTextSize(label, 0, fontScale=0.5, thickness=2)[0]
c2 = x1 + text_size[0], y1 - text_size[1] - 3
cv2.rectangle(frame, (x1, y1), c2, color, -1)
cv2.putText(frame, label, (x1, y1 - 2), 0, 0.5, [255, 255, 255], thickness=1, lineType=cv2.LINE_AA)
cv2.circle(frame,center, 2, (0,255,0), cv2.FILLED)
if draw_trails:
# draw trail
for i in range(1, len(data_deque[id])):
# check if on buffer value is none
if data_deque[id][i - 1] is None or data_deque[id][i] is None:
continue
# generate dynamic thickness of trails
thickness = int(np.sqrt(64 / float(i + i)) * 1.5)
# draw trails
cv2.line(frame, data_deque[id][i - 1], data_deque[id][i], color, thickness)
return frame
@smart_inference_mode()
def run_deepsort(
weights=ROOT / 'yolo.pt', # model path or triton URL
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
data=ROOT / 'data/coco.yaml', # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / 'runs/detect', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
vid_stride=1, # video frame-rate stride
draw_trails = False,
):
source = str(source)
save_img = not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
screenshot = source.lower().startswith('screen')
if is_url and is_file:
source = check_file(source) # download
# Directories
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
save_dir.mkdir(parents=True, exist_ok=True) # make dir
#Initalize deepsort
# Create the Deep SORT configuration object and load settings from the YAML file
cfg_deep = get_config()
cfg_deep.merge_from_file("deep_sort_pytorch/configs/deep_sort.yaml")
# Initialize the DeepSort tracker
deepsort = DeepSort(cfg_deep.DEEPSORT.REID_CKPT,
max_dist=cfg_deep.DEEPSORT.MAX_DIST,
# min_confidence parameter sets the minimum tracking confidence required for an object detection to be considered in the tracking process
min_confidence=cfg_deep.DEEPSORT.MIN_CONFIDENCE,
#nms_max_overlap specifies the maximum allowed overlap between bounding boxes during non-maximum suppression (NMS)
nms_max_overlap=cfg_deep.DEEPSORT.NMS_MAX_OVERLAP,
#max_iou_distance parameter defines the maximum intersection-over-union (IoU) distance between object detections
max_iou_distance=cfg_deep.DEEPSORT.MAX_IOU_DISTANCE,
# Max_age: If an object's tracking ID is lost (i.e., the object is no longer detected), this parameter determines how many frames the tracker should wait before assigning a new id
max_age=cfg_deep.DEEPSORT.MAX_AGE, n_init=cfg_deep.DEEPSORT.N_INIT,
#nn_budget: It sets the budget for the nearest-neighbor search.
nn_budget=cfg_deep.DEEPSORT.NN_BUDGET,
use_cuda=True
)
# Load model
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
# Dataloader
bs = 1 # batch_size
if webcam:
view_img = check_imshow(warn=True)
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
bs = len(dataset)
elif screenshot:
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
vid_path, vid_writer = [None] * bs, [None] * bs
# Run inference
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
for path, im, im0s, vid_cap, s in dataset:
with dt[0]:
im = torch.from_numpy(im).to(model.device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # expand for batch dim
# Inference
with dt[1]:
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)
# pred = pred[0][1]
# NMS
with dt[2]:
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
# Second-stage classifier (optional)
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
# Process predictions
for i, det in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f'{i}: '
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
s += '%gx%g ' % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
ims = im0.copy()
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, 5].unique():
n = (det[:, 5] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
xywh_bboxs = []
confs = []
oids = []
outputs = []
# Write results
for *xyxy, conf, cls in reversed(det):
x1, y1, x2, y2 = xyxy
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
#Find the Center Coordinates for each of the detected object
cx, cy = int((x1+x2)/2), int((y1+y2)/2)
#Find the Width and Height of the Boundng box
bbox_width = abs(x1-x2)
bbox_height = abs(y1-y2)
xcycwh = [cx, cy, bbox_width, bbox_height]
xywh_bboxs.append(xcycwh)
conf = math.ceil(conf*100)/100
confs.append(conf)
classNameInt = int(cls)
oids.append(classNameInt)
xywhs = torch.tensor(xywh_bboxs)
confss = torch.tensor(confs)
outputs = deepsort.update(xywhs, confss, oids, ims)
if len(outputs) > 0:
bbox_xyxy = outputs[:, :4]
identities = outputs[:, -2]
object_id = outputs[:, -1]
draw_boxes(ims, bbox_xyxy, draw_trails, identities, object_id)
# Stream results
if view_img:
if platform.system() == 'Linux' and p not in windows:
windows.append(p)
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
cv2.resizeWindow(str(p), ims.shape[1], ims.shape[0])
cv2.imshow(str(p), ims)
cv2.waitKey(1) # 1 millisecond
# Save results (image with detections)
if save_img:
if vid_path[i] != save_path: # new video
vid_path[i] = save_path
if isinstance(vid_writer[i], cv2.VideoWriter):
vid_writer[i].release() # release previous video writer
if vid_cap: # video
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
else: # stream
fps, w, h = 30, ims.shape[1], ims.shape[0]
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc('m','p','4','v'), fps, (w, h))
vid_writer[i].write(ims)
# Print time (inference-only)
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
if update:
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
return save_path
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model path or triton URL')
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='show results')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--draw-trails', action='store_true', help='do not drawtrails')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def main(opt):
# check_requirements(exclude=('tensorboard', 'thop'))
run_deepsort(**vars(opt))
if __name__ == "__main__":
opt = parse_opt()
main(opt)