Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import platform | |
| import sys | |
| import time | |
| from pathlib import Path | |
| import pandas as pd | |
| FILE = Path(__file__).resolve() | |
| ROOT = FILE.parents[0] # YOLO root directory | |
| if str(ROOT) not in sys.path: | |
| sys.path.append(str(ROOT)) # add ROOT to PATH | |
| # ROOT = ROOT.relative_to(Path.cwd()) # relative | |
| import export | |
| from models.experimental import attempt_load | |
| from models.yolo import SegmentationModel | |
| from segment.val import run as val_seg | |
| from utils import notebook_init | |
| from utils.general import LOGGER, check_yaml, file_size, print_args | |
| from utils.torch_utils import select_device | |
| from val import run as val_det | |
| def run( | |
| weights=ROOT / 'yolo.pt', # weights path | |
| imgsz=640, # inference size (pixels) | |
| batch_size=1, # batch size | |
| data=ROOT / 'data/coco.yaml', # dataset.yaml path | |
| device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
| half=False, # use FP16 half-precision inference | |
| test=False, # test exports only | |
| pt_only=False, # test PyTorch only | |
| hard_fail=False, # throw error on benchmark failure | |
| ): | |
| y, t = [], time.time() | |
| device = select_device(device) | |
| model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc. | |
| for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU) | |
| try: | |
| assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported | |
| assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML | |
| if 'cpu' in device.type: | |
| assert cpu, 'inference not supported on CPU' | |
| if 'cuda' in device.type: | |
| assert gpu, 'inference not supported on GPU' | |
| # Export | |
| if f == '-': | |
| w = weights # PyTorch format | |
| else: | |
| w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others | |
| assert suffix in str(w), 'export failed' | |
| # Validate | |
| if model_type == SegmentationModel: | |
| result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half) | |
| metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls)) | |
| else: # DetectionModel: | |
| result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half) | |
| metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls)) | |
| speed = result[2][1] # times (preprocess, inference, postprocess) | |
| y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference | |
| except Exception as e: | |
| if hard_fail: | |
| assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}' | |
| LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}') | |
| y.append([name, None, None, None]) # mAP, t_inference | |
| if pt_only and i == 0: | |
| break # break after PyTorch | |
| # Print results | |
| LOGGER.info('\n') | |
| parse_opt() | |
| notebook_init() # print system info | |
| c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', ''] | |
| py = pd.DataFrame(y, columns=c) | |
| LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)') | |
| LOGGER.info(str(py if map else py.iloc[:, :2])) | |
| if hard_fail and isinstance(hard_fail, str): | |
| metrics = py['mAP50-95'].array # values to compare to floor | |
| floor = eval(hard_fail) # minimum metric floor to pass | |
| assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}' | |
| return py | |
| def test( | |
| weights=ROOT / 'yolo.pt', # weights path | |
| imgsz=640, # inference size (pixels) | |
| batch_size=1, # batch size | |
| data=ROOT / 'data/coco128.yaml', # dataset.yaml path | |
| device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu | |
| half=False, # use FP16 half-precision inference | |
| test=False, # test exports only | |
| pt_only=False, # test PyTorch only | |
| hard_fail=False, # throw error on benchmark failure | |
| ): | |
| y, t = [], time.time() | |
| device = select_device(device) | |
| for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable) | |
| try: | |
| w = weights if f == '-' else \ | |
| export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights | |
| assert suffix in str(w), 'export failed' | |
| y.append([name, True]) | |
| except Exception: | |
| y.append([name, False]) # mAP, t_inference | |
| # Print results | |
| LOGGER.info('\n') | |
| parse_opt() | |
| notebook_init() # print system info | |
| py = pd.DataFrame(y, columns=['Format', 'Export']) | |
| LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)') | |
| LOGGER.info(str(py)) | |
| return py | |
| def parse_opt(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='weights path') | |
| parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)') | |
| parser.add_argument('--batch-size', type=int, default=1, help='batch size') | |
| parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path') | |
| parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') | |
| parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') | |
| parser.add_argument('--test', action='store_true', help='test exports only') | |
| parser.add_argument('--pt-only', action='store_true', help='test PyTorch only') | |
| parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric') | |
| opt = parser.parse_args() | |
| opt.data = check_yaml(opt.data) # check YAML | |
| print_args(vars(opt)) | |
| return opt | |
| def main(opt): | |
| test(**vars(opt)) if opt.test else run(**vars(opt)) | |
| if __name__ == "__main__": | |
| opt = parse_opt() | |
| main(opt) | |