Spaces:
Runtime error
Runtime error
File size: 6,996 Bytes
4c1d330 188ed7e 4c1d330 28d6d09 4c1d330 28d6d09 4c1d330 28d6d09 4c1d330 90bc5e7 4c1d330 90bc5e7 4c1d330 188ed7e 90bc5e7 4c1d330 90bc5e7 4c1d330 90bc5e7 4c1d330 90bc5e7 4c1d330 90bc5e7 4c1d330 90bc5e7 4c1d330 90bc5e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
import os
import numpy as np
import torch as th
from imageio import imread
from skimage.transform import resize as imresize
from ema_pytorch import EMA
from decomp_diffusion.model_and_diffusion_util import *
from decomp_diffusion.diffusion.respace import SpacedDiffusion
from decomp_diffusion.gen_image import *
from download import download_model
import gradio as gr
# fix randomness
th.manual_seed(0)
np.random.seed(0)
def get_pil_im(im, resolution=64):
im = imresize(im, (resolution, resolution))[:, :, :3]
im = th.Tensor(im).permute(2, 0, 1)[None, :, :, :].contiguous()
return im
# generate image components and reconstruction
def gen_image_and_components(model, gd, im, num_components=4, sample_method='ddim', batch_size=1, image_size=64, device='cuda', num_images=1):
"""Generate row of orig image, individual components, and reconstructed image"""
orig_img = get_pil_im(im, resolution=image_size).to(device)
latent = model.encode_latent(orig_img)
model_kwargs = {'latent': latent}
assert sample_method in ('ddpm', 'ddim')
sample_loop_func = gd.p_sample_loop if sample_method == 'ddpm' else gd.ddim_sample_loop
if sample_method == 'ddim':
model = gd._wrap_model(model)
# generate imgs
for i in range(num_images):
all_samples = [orig_img]
# individual components
for j in range(num_components):
model_kwargs['latent_index'] = j
sample = sample_loop_func(
model,
(batch_size, 3, image_size, image_size),
device=device,
clip_denoised=True,
progress=True,
model_kwargs=model_kwargs,
cond_fn=None,
)[:batch_size]
# save indiv comp
all_samples.append(sample)
# reconstruction
model_kwargs['latent_index'] = None
sample = sample_loop_func(
model,
(batch_size, 3, image_size, image_size),
device=device,
clip_denoised=True,
progress=True,
model_kwargs=model_kwargs,
cond_fn=None,
)[:batch_size]
# save indiv reconstruction
all_samples.append(sample)
samples = th.cat(all_samples, dim=0).cpu()
grid = make_grid(samples, nrow=samples.shape[0], padding=0)
return grid
def decompose_image(im):
sample_method = 'ddim'
result = gen_image_and_components(clevr_model, GD[sample_method], im, sample_method=sample_method, num_images=1, device=device)
return result.permute(1, 2, 0).numpy()
# load diffusion
GD = {} # diffusion objects for ddim and ddpm
diffusion_kwargs = diffusion_defaults()
gd = create_gaussian_diffusion(**diffusion_kwargs)
GD['ddpm'] = gd
# set up ddim sampling
desired_timesteps = 50
num_timesteps = diffusion_kwargs['steps']
spacing = num_timesteps // desired_timesteps
spaced_ts = list(range(0, num_timesteps + 1, spacing))
betas = get_named_beta_schedule(diffusion_kwargs['noise_schedule'], num_timesteps)
diffusion_kwargs['betas'] = betas
del diffusion_kwargs['steps'], diffusion_kwargs['noise_schedule']
gd = SpacedDiffusion(spaced_ts, rescale_timesteps=True, original_num_steps=num_timesteps, **diffusion_kwargs)
GD['ddim'] = gd
# ckpt_path = download_model('clevr') # 'clevr_model.pt'
# model_kwargs = unet_model_defaults()
# # model parameters
# model_kwargs.update(dict(
# emb_dim=64,
# enc_channels=128
# ))
# clevr_model = create_diffusion_model(**model_kwargs)
# clevr_model.eval()
# device = 'cuda' if th.cuda.is_available() else 'cpu'
# clevr_model.to(device)
# print(f'loading from {ckpt_path}')
# checkpoint = th.load(ckpt_path, map_location='cpu')
# clevr_model.load_state_dict(checkpoint)
# img_input = gr.inputs.Image(type="numpy", label="Input")
# img_output = gr.outputs.Image(type="numpy", label="Output")
# gr.Interface(
# decompose_image,
# inputs=img_input,
# outputs=img_output,
# examples=[
# "sample_images/clevr_im_10.png",
# "sample_images/clevr_im_25.png",
# ],
# ).launch()
def combine_components_slice(model, gd, im1, im2, indices=None, sample_method='ddim', device='cuda', num_images=4, model_kwargs={}, desc='', save_dir='', dataset='clevr', image_size=64):
"""Combine by adding components together
"""
assert sample_method in ('ddpm', 'ddim')
im1 = get_pil_im(im1, resolution=image_size).to(device)
im2 = get_pil_im(im2, resolution=image_size).to(device)
latent1 = model.encode_latent(im1)
latent2 = model.encode_latent(im2)
num_comps = model.num_components
# get latent slices
if indices == None:
half = num_comps // 2
indices = [1] * half + [0] * half # first half 1, second half 0
indices = th.Tensor(indices) == 1
indices = indices.reshape(num_comps, 1)
elif type(indices) == str:
indices = indices.split(',')
indices = [int(ind) for ind in indices]
indices = th.Tensor(indices).reshape(-1, 1) == 1
assert len(indices) == num_comps
indices = indices.to(device)
latent1 = latent1.reshape(num_comps, -1).to(device)
latent2 = latent2.reshape(num_comps, -1).to(device)
combined_latent = th.where(indices, latent1, latent2)
combined_latent = combined_latent.reshape(1, -1)
model_kwargs['latent'] = combined_latent
sample_loop_func = gd.p_sample_loop if sample_method == 'ddpm' else gd.ddim_sample_loop
if sample_method == 'ddim':
model = gd._wrap_model(model)
# sampling loop
sample = sample_loop_func(
model,
(1, 3, image_size, image_size),
device=device,
clip_denoised=True,
progress=True,
model_kwargs=model_kwargs,
cond_fn=None,
)[:1]
return sample[0].cpu()
def combine_images(im1, im2):
sample_method = 'ddim'
result = combine_components_slice(clevr_model, GD[sample_method], im1, im2, indices='1,0,1,0', sample_method=sample_method, num_images=1)
return result.permute(1, 2, 0).numpy()
ckpt_path = download_model('celebahq') # 'celeb_model.pt'
model_kwargs = unet_model_defaults()
# model parameters
model_kwargs.update(dict(
enc_channels=128
))
celeb_model = create_diffusion_model(**model_kwargs)
celeb_model.eval()
device = 'cuda' if th.cuda.is_available() else 'cpu'
celeb_model.to(device)
print(f'loading from {ckpt_path}')
checkpoint = th.load(ckpt_path, map_location='cpu')
celeb_model.load_state_dict(checkpoint)
# Recombination
img_input = gr.inputs.Image(type="numpy", label="Input")
img_input2 = gr.inputs.Image(type="numpy", label="Input")
img_output = gr.outputs.Image(type="numpy", label="Output")
gr.Interface(
combine_images,
inputs=[img_input, img_input2],
outputs=img_output,
examples=[
["sample_images/celebahq_im_15.jpg",
"sample_images/celebahq_im_21.jpg"]
]
).launch()
|