File size: 14,725 Bytes
db0a2ce
 
 
 
 
 
 
 
 
 
 
 
 
df3ba3c
db0a2ce
 
 
 
 
 
df3ba3c
db0a2ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df3ba3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db0a2ce
 
 
df3ba3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db0a2ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df3ba3c
db0a2ce
 
 
df3ba3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db0a2ce
df3ba3c
 
 
db0a2ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df3ba3c
 
 
 
 
 
db0a2ce
 
df3ba3c
db0a2ce
df3ba3c
 
db0a2ce
 
 
df3ba3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db0a2ce
df3ba3c
db0a2ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df3ba3c
 
 
 
 
 
 
 
db0a2ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
from flask import Flask, request, jsonify, send_from_directory, abort
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import librosa
import torch
import numpy as np
from onnxruntime import InferenceSession
import soundfile as sf
import os
import sys
import uuid
import logging
from flask_cors import CORS
import threading
import werkzeug
import tempfile
from huggingface_hub import snapshot_download
from tts_processor import preprocess_all
import hashlib

# Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

app = Flask(__name__)
CORS(app, resources={r"/*": {"origins": "*"}})

# Global lock to ensure one method runs at a time
global_lock = threading.Lock()

# Repository ID and paths
kokoro_model_id = 'onnx-community/Kokoro-82M-v1.0-ONNX'
model_path = 'kokoro_model'
voice_name = 'am_adam'  # Example voice: af (adjust as needed)

# Directory to serve files from
SERVE_DIR = os.environ.get("SERVE_DIR", "./files")  # Default to './files' if not provided

os.makedirs(SERVE_DIR, exist_ok=True)
def validate_audio_file(file):
    """Validates audio files including WebM/Opus format"""
    if not isinstance(file, werkzeug.datastructures.FileStorage):
        raise ValueError("Invalid file type")
    
    # Supported MIME types (add WebM/Opus)
    supported_types = [
        "audio/wav",
        "audio/x-wav",
        "audio/mpeg",
        "audio/mp3",
        "audio/webm",
        "audio/ogg"  # For Opus in Ogg container
    ]
    
    # Check MIME type
    if file.content_type not in supported_types:
        raise ValueError(f"Unsupported file type. Must be one of: {', '.join(supported_types)}")
    
    # Check file size
    file.seek(0, os.SEEK_END)
    file_size = file.tell()
    file.seek(0)  # Reset file pointer
    
    max_size = 10 * 1024 * 1024  # 10 MB
    if file_size > max_size:
        raise ValueError(f"File is too large (max {max_size//(1024*1024)} MB)")
    
    # Optional: Verify file header matches content_type
    if not verify_audio_header(file):
        raise ValueError("File header doesn't match declared content type")
def verify_audio_header(file):
    """Quickly checks if file headers match the declared audio format"""
    header = file.read(4)
    file.seek(0)  # Rewind after reading
    
    if file.content_type in ["audio/webm", "audio/ogg"]:
        # WebM starts with \x1aE\xdf\xa3, Ogg with OggS
        return (
            (file.content_type == "audio/webm" and header.startswith(b'\x1aE\xdf\xa3')) or
            (file.content_type == "audio/ogg" and header.startswith(b'OggS'))
        )
    elif file.content_type in ["audio/wav", "audio/x-wav"]:
        return header.startswith(b'RIFF')
    elif file.content_type in ["audio/mpeg", "audio/mp3"]:
        return header.startswith(b'\xff\xfb')  # MP3 frame sync
    return True  # Skip verification for other types

def validate_text_input(text):
    if not isinstance(text, str):
        raise ValueError("Text input must be a string")
    if len(text.strip()) == 0:
        raise ValueError("Text input cannot be empty")
    if len(text) > 1024:  # Limit to 1024 characters
        raise ValueError("Text input is too long (max 1024 characters)")

file_cache = {}

def is_cached(cached_file_path):
    """
    Check if a file exists in the cache.
    If the file is not in the cache, perform a disk check and update the cache.
    """
    if cached_file_path in file_cache:
        return file_cache[cached_file_path]  # Return cached result
    exists = os.path.exists(cached_file_path)  # Perform disk check
    file_cache[cached_file_path] = exists  # Update the cache
    return exists

# Initialize models
def initialize_models():
    global sess, voice_style, processor, whisper_model

    try:
        # Download the ONNX model if not already downloaded
        if not os.path.exists(model_path):
            logger.info("Downloading and loading Kokoro model...")
            kokoro_dir = snapshot_download(kokoro_model_id, cache_dir=model_path)
            logger.info(f"Kokoro model directory: {kokoro_dir}")
        else:
            kokoro_dir = model_path
            logger.info(f"Using cached Kokoro model directory: {kokoro_dir}")

        # Validate ONNX file path
        onnx_path = None
        for root, _, files in os.walk(kokoro_dir):
            if 'model.onnx' in files:
                onnx_path = os.path.join(root, 'model.onnx')
                break

        if not onnx_path or not os.path.exists(onnx_path):
            raise FileNotFoundError(f"ONNX file not found after redownload at {kokoro_dir}")

        logger.info("Loading ONNX session...")
        sess = InferenceSession(onnx_path)
        logger.info(f"ONNX session loaded successfully from {onnx_path}")

        # Load the voice style vector
        voice_style_path = None
        for root, _, files in os.walk(kokoro_dir):
            if f'{voice_name}.bin' in files:
                voice_style_path = os.path.join(root, f'{voice_name}.bin')
                break

        if not voice_style_path or not os.path.exists(voice_style_path):
            raise FileNotFoundError(f"Voice style file not found at {voice_style_path}")

        logger.info("Loading voice style vector...")
        voice_style = np.fromfile(voice_style_path, dtype=np.float32).reshape(-1, 1, 256)
        logger.info(f"Voice style vector loaded successfully from {voice_style_path}")

        # Initialize Whisper model for S2T
        logger.info("Downloading and loading Whisper model...")
        processor = WhisperProcessor.from_pretrained("openai/whisper-base")
        whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
        whisper_model.config.forced_decoder_ids = None
        logger.info("Whisper model loaded successfully")

    except Exception as e:
        logger.error(f"Error initializing models: {str(e)}")
        raise

# Initialize models
initialize_models()

# Health check endpoint
@app.route('/health', methods=['GET'])
def health_check():
    try:
        return jsonify({"status": "healthy"}), 200
    except Exception as e:
        logger.error(f"Health check failed: {str(e)}")
        return jsonify({"status": "unhealthy"}), 500

# Text-to-Speech (T2S) Endpoint
@app.route('/generate_audio', methods=['POST'])
def generate_audio():
    """Text-to-Speech (T2S) Endpoint"""
    with global_lock:  # Acquire global lock to ensure only one instance runs
        try:
            logger.debug("Received request to /generate_audio")
            data = request.json
            text = data['text']
            output_dir = data.get('output_dir')

            validate_text_input(text)
            logger.debug(f"Text: {text}")
            if not output_dir:
                raise ValueError("Output directory is required but not provided")

            # Ensure output_dir is an absolute path and valid
            if not os.path.isabs(output_dir):
                raise ValueError("Output directory must be an absolute path")
            if not os.path.exists(output_dir):
                raise ValueError(f"Output directory does not exist: {output_dir}")

            # Generate a unique hash for the text
            text = preprocess_all(text)
            logger.debug(f"Processed Text {text}")
            text_hash = hashlib.sha256(text.encode('utf-8')).hexdigest()
            hashed_file_name = f"{text_hash}.wav"
            cached_file_path = os.path.join(output_dir, hashed_file_name)
            logger.debug(f"Generated hash for processed text: {text_hash}")
            logger.debug(f"Output directory: {output_dir}")
            logger.debug(f"Cached file path: {cached_file_path}")

            # Check if cached file exists
            if is_cached(cached_file_path):
                logger.info(f"Returning cached audio for text: {text}")
                return jsonify({"status": "success", "output_path": cached_file_path})

            # Tokenize text
            logger.debug("Tokenizing text...")
            from kokoro import phonemize, tokenize  # Import dynamically
            tokens = tokenize(phonemize(text, 'a'))
            logger.debug(f"Initial tokens: {tokens}")
            if len(tokens) > 510:
                logger.warning("Text too long; truncating to 510 tokens.")
                tokens = tokens[:510]
            tokens = [[0, *tokens, 0]]  # Add pad tokens
            logger.debug(f"Final tokens: {tokens}")

            # Get style vector based on token length
            logger.debug("Fetching style vector...")
            ref_s = voice_style[len(tokens[0]) - 2]  # Shape: (1, 256)
            logger.debug(f"Style vector shape: {ref_s.shape}")

            # Run ONNX inference
            logger.debug("Running ONNX inference...")
            audio = sess.run(None, dict(
                input_ids=np.array(tokens, dtype=np.int64),
                style=ref_s,
                speed=np.ones(1, dtype=np.float32),
            ))[0]
            logger.debug(f"Audio generated with shape: {audio.shape}")

            # Fix audio data for saving
            audio = np.squeeze(audio)  # Remove extra dimension
            audio = audio.astype(np.float32)  # Ensure correct data type

            # Save audio
            logger.debug(f"Saving audio to {cached_file_path}...")
            sf.write(cached_file_path, audio, 24000)  # Save with 24 kHz sample rate
            logger.info(f"Audio saved successfully to {cached_file_path}")
            return jsonify({"status": "success", "output_path": cached_file_path})
        except Exception as e:
            logger.error(f"Error generating audio: {str(e)}")
            return jsonify({"status": "error", "message": str(e)}), 500

# Speech-to-Text (S2T) Endpoint
# Add these imports at the top with the other imports
import subprocess
import tempfile
from pathlib import Path

# Then update the transcribe_audio function:
@app.route('/transcribe_audio', methods=['POST'])
def transcribe_audio():
    """Speech-to-Text (S2T) Endpoint with automatic format conversion"""
    with global_lock:  # Acquire global lock to ensure only one instance runs
        input_audio_path = None
        converted_audio_path = None
        try:
            logger.debug("Received request to /transcribe_audio")
            file = request.files['file']
            
            # Create temporary files for both input and output
            with tempfile.NamedTemporaryFile(delete=False, suffix=Path(file.filename).suffix) as input_temp:
                input_audio_path = input_temp.name
                file.save(input_audio_path)
                logger.debug(f"Original audio file saved to {input_audio_path}")
            
            # Create a temporary file for the converted WAV
            with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as output_temp:
                converted_audio_path = output_temp.name
            
            # Convert to WAV with ffmpeg (16kHz, mono)
            logger.debug(f"Converting audio to 16kHz mono WAV format...")
            conversion_command = [
                'ffmpeg',
                '-y',                  # Force overwrite without prompting
                '-i', input_audio_path,
                '-acodec', 'pcm_s16le', # 16-bit PCM
                '-ac', '1',             # mono
                '-ar', '16000',         # 16kHz sample rate
                '-af', 'highpass=f=80,lowpass=f=7500,afftdn=nr=10:nf=-25,loudnorm=I=-16:TP=-1.5:LRA=11',  # Audio cleanup filters
                converted_audio_path
            ]
            result = subprocess.run(
                conversion_command,
                stdout=subprocess.PIPE,
                stderr=subprocess.PIPE,
                text=True
            )
            
            if result.returncode != 0:
                logger.error(f"FFmpeg conversion error: {result.stderr}")
                raise Exception(f"Audio conversion failed: {result.stderr}")
            
            logger.debug(f"Audio successfully converted to {converted_audio_path}")
            
            # Load and process the converted audio
            logger.debug("Processing audio for transcription...")
            audio_array, sampling_rate = librosa.load(converted_audio_path, sr=16000)

            input_features = processor(
                audio_array,
                sampling_rate=sampling_rate,
                return_tensors="pt"
            ).input_features

            # Generate transcription
            logger.debug("Generating transcription...")
            predicted_ids = whisper_model.generate(input_features)
            transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
            logger.info(f"Transcription: {transcription}")

            return jsonify({"status": "success", "transcription": transcription})
        except Exception as e:
            logger.error(f"Error transcribing audio: {str(e)}")
            return jsonify({"status": "error", "message": str(e)}), 500
        finally:
            # Clean up temporary files
            for path in [input_audio_path, converted_audio_path]:
                if path and os.path.exists(path):
                    try:
                        os.remove(path)
                        logger.debug(f"Temporary file {path} removed")
                    except Exception as e:
                        logger.warning(f"Failed to remove temporary file {path}: {e}")

@app.route('/files/<filename>', methods=['GET'])
def serve_wav_file(filename):
    """
    Serve a .wav file from the configured directory.
    Only serves files ending with '.wav'.
    """
    # Ensure only .wav files are allowed
    if not filename.lower().endswith('.wav'):
        abort(400, "Only .wav files are allowed.")
    
    # Check if the file exists in the directory
    file_path = os.path.join(SERVE_DIR, filename)
    logger.debug(f"Looking for file at: {file_path}")
    if not os.path.isfile(file_path):
        logger.error(f"File not found: {file_path}")
        abort(404, "File not found.")
    
    # Serve the file
    return send_from_directory(SERVE_DIR, filename)

# Error handlers
@app.errorhandler(400)
def bad_request(error):
    """Handle 400 errors."""
    return {"error": "Bad Request", "message": str(error)}, 400

@app.errorhandler(404)
def not_found(error):
    """Handle 404 errors."""
    return {"error": "Not Found", "message": str(error)}, 404

@app.errorhandler(500)
def internal_error(error):
    """Handle unexpected errors."""
    return {"error": "Internal Server Error", "message": "An unexpected error occurred."}, 500

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860)