aitube2 / api_core.py
jbilcke-hf's picture
jbilcke-hf HF Staff
working on shareability/virality
83f2577
import logging
import os
import io
import re
import base64
import uuid
from typing import Dict, Any, Optional, List, Literal
from dataclasses import dataclass
from asyncio import Lock, Queue
import asyncio
import time
import datetime
from contextlib import asynccontextmanager
from collections import defaultdict
from aiohttp import web, ClientSession
from huggingface_hub import InferenceClient, HfApi
from gradio_client import Client
import random
import yaml
import json
from api_config import *
# User role type
UserRole = Literal['anon', 'normal', 'pro', 'admin']
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def generate_seed():
"""Generate a random positive 32-bit integer seed."""
return random.randint(0, 2**32 - 1)
def sanitize_yaml_response(response_text: str) -> str:
"""
Sanitize and format AI response into valid YAML.
Returns properly formatted YAML string.
"""
response_text = response_text.split("```")[0]
# Remove any markdown code block indicators and YAML document markers
clean_text = re.sub(r'```yaml|```|---|\.\.\.$', '', response_text.strip())
# Split into lines and process each line
lines = clean_text.split('\n')
sanitized_lines = []
current_field = None
for line in lines:
stripped = line.strip()
if not stripped:
continue
# Handle field starts
if stripped.startswith('title:') or stripped.startswith('description:'):
# Ensure proper YAML format with space after colon and proper quoting
field_name = stripped.split(':', 1)[0]
field_value = stripped.split(':', 1)[1].strip().strip('"\'')
# Quote the value if it contains special characters
if any(c in field_value for c in ':[]{},&*#?|-<>=!%@`'):
field_value = f'"{field_value}"'
sanitized_lines.append(f"{field_name}: {field_value}")
current_field = field_name
elif stripped.startswith('tags:'):
sanitized_lines.append('tags:')
current_field = 'tags'
elif stripped.startswith('-') and current_field == 'tags':
# Process tag values
tag = stripped[1:].strip().strip('"\'')
if tag:
# Clean and format tag
tag = re.sub(r'[^\x00-\x7F]+', '', tag) # Remove non-ASCII
tag = re.sub(r'[^a-zA-Z0-9\s-]', '', tag) # Keep only alphanumeric and hyphen
tag = tag.strip().lower().replace(' ', '-')
if tag:
sanitized_lines.append(f" - {tag}")
elif current_field in ['title', 'description']:
# Handle multi-line title/description continuation
value = stripped.strip('"\'')
if value:
# Append to previous line
prev = sanitized_lines[-1]
sanitized_lines[-1] = f"{prev} {value}"
# Ensure the YAML has all required fields
required_fields = {'title', 'description', 'tags'}
found_fields = {line.split(':')[0].strip() for line in sanitized_lines if ':' in line}
for field in required_fields - found_fields:
if field == 'tags':
sanitized_lines.extend(['tags:', ' - default'])
else:
sanitized_lines.append(f'{field}: "No {field} provided"')
return '\n'.join(sanitized_lines)
@dataclass
class Endpoint:
id: int
url: str
busy: bool = False
last_used: float = 0
error_count: int = 0
error_until: float = 0 # Timestamp until which this endpoint is considered in error state
class EndpointManager:
def __init__(self):
self.endpoints: List[Endpoint] = []
self.lock = Lock()
self.initialize_endpoints()
self.last_used_index = -1 # Track the last used endpoint for round-robin
def initialize_endpoints(self):
"""Initialize the list of endpoints"""
for i, url in enumerate(VIDEO_ROUND_ROBIN_ENDPOINT_URLS):
endpoint = Endpoint(id=i + 1, url=url)
self.endpoints.append(endpoint)
def _get_next_free_endpoint(self):
"""Get the next available non-busy endpoint, or oldest endpoint if all are busy"""
current_time = time.time()
# First priority: Get any non-busy and non-error endpoint
free_endpoints = [
ep for ep in self.endpoints
if not ep.busy and current_time > ep.error_until
]
if free_endpoints:
# Return the least recently used free endpoint
return min(free_endpoints, key=lambda ep: ep.last_used)
# Second priority: If all busy/error, use round-robin but skip error endpoints
tried_count = 0
next_index = self.last_used_index
while tried_count < len(self.endpoints):
next_index = (next_index + 1) % len(self.endpoints)
tried_count += 1
# If endpoint is not in error state, use it
if current_time > self.endpoints[next_index].error_until:
self.last_used_index = next_index
return self.endpoints[next_index]
# If all endpoints are in error state, use the one with earliest error expiry
self.last_used_index = next_index
return min(self.endpoints, key=lambda ep: ep.error_until)
@asynccontextmanager
async def get_endpoint(self, max_wait_time: int = 10):
"""Get the next available endpoint using a context manager"""
start_time = time.time()
endpoint = None
try:
while True:
if time.time() - start_time > max_wait_time:
raise TimeoutError(f"Could not acquire an endpoint within {max_wait_time} seconds")
async with self.lock:
# Get the next available endpoint using our selection strategy
endpoint = self._get_next_free_endpoint()
# Mark it as busy
endpoint.busy = True
endpoint.last_used = time.time()
logger.info(f"Using endpoint {endpoint.id} (busy: {endpoint.busy}, last used: {endpoint.last_used})")
break
yield endpoint
finally:
if endpoint:
async with self.lock:
endpoint.busy = False
endpoint.last_used = time.time()
# We don't need to put back into queue - our strategy now picks directly from the list
class ChatRoom:
def __init__(self):
self.messages = []
self.connected_clients = set()
self.max_history = 100
def add_message(self, message):
self.messages.append(message)
if len(self.messages) > self.max_history:
self.messages.pop(0)
def get_recent_messages(self, limit=50):
return self.messages[-limit:]
class VideoGenerationAPI:
def __init__(self):
self.inference_client = InferenceClient(token=HF_TOKEN)
self.hf_api = HfApi(token=HF_TOKEN)
self.endpoint_manager = EndpointManager()
self.active_requests: Dict[str, asyncio.Future] = {}
self.chat_rooms = defaultdict(ChatRoom)
self.video_events: Dict[str, List[Dict[str, Any]]] = defaultdict(list)
self.event_history_limit = 50
# Cache for user roles to avoid repeated API calls
self.user_role_cache: Dict[str, Dict[str, Any]] = {}
# Cache expiration time (10 minutes)
self.cache_expiration = 600
def _add_event(self, video_id: str, event: Dict[str, Any]):
"""Add an event to the video's history and maintain the size limit"""
events = self.video_events[video_id]
events.append(event)
if len(events) > self.event_history_limit:
events.pop(0)
async def validate_user_token(self, token: str) -> UserRole:
"""
Validates a Hugging Face token and determines the user's role.
Returns one of:
- 'anon': Anonymous user (no token or invalid token)
- 'normal': Standard Hugging Face user
- 'pro': Hugging Face Pro user
- 'admin': Admin user (username in ADMIN_ACCOUNTS)
"""
# If no token is provided, the user is anonymous
if not token:
return 'anon'
# Check if we have a cached result for this token
current_time = time.time()
if token in self.user_role_cache:
cached_data = self.user_role_cache[token]
# If the cache is still valid
if current_time - cached_data['timestamp'] < self.cache_expiration:
logger.info(f"Using cached user role: {cached_data['role']}")
return cached_data['role']
# No valid cache, need to check the token with the HF API
try:
# Use HF API to validate the token and get user info
logger.info("Validating Hugging Face token...")
# Run in executor to avoid blocking the event loop
user_info = await asyncio.get_event_loop().run_in_executor(
None,
lambda: self.hf_api.whoami(token=token)
)
logger.info(f"Token valid for user: {user_info.name}")
# Determine the user role based on the information
user_role: UserRole
# Check if the user is an admin
if user_info.name in ADMIN_ACCOUNTS:
user_role = 'admin'
# Check if the user has a pro account
elif hasattr(user_info, 'is_pro') and user_info.is_pro:
user_role = 'pro'
else:
user_role = 'normal'
# Cache the result
self.user_role_cache[token] = {
'role': user_role,
'timestamp': current_time,
'username': user_info.name
}
return user_role
except Exception as e:
logger.error(f"Failed to validate Hugging Face token: {str(e)}")
# If validation fails, the user is treated as anonymous
return 'anon'
async def download_video(self, url: str) -> bytes:
"""Download video file from URL and return bytes"""
async with ClientSession() as session:
async with session.get(url) as response:
if response.status != 200:
raise Exception(f"Failed to download video: HTTP {response.status}")
return await response.read()
async def search_video(self, query: str, search_count: int = 0, attempt_count: int = 0) -> Optional[dict]:
"""Generate a single search result using HF text generation"""
prompt = f"""# Instruction
Your response MUST be a YAML object containing a title, description, and tags, consistent with what we can find on a video sharing platform.
Format your YAML response with only those fields: "title" (a short string), "description" (string caption of the scene), and "tags" (array of 3 to 4 strings). Do not add any other field.
In the description field, describe in a very synthetic way the visuals of the first shot (first scene), eg "<STYLE>, medium close-up shot, high angle view of a <AGE>yo <GENDER> <CHARACTERS> <ACTIONS>, <LOCATION> <LIGHTING> <WEATHER>". Keep it minimalist but still descriptive, don't use bullets points, use simple words, go to the essential to describe style (cinematic, documentary footage, 3D rendering..), camera modes and angles, characters, age, gender, action, location, lighting, country, costume, time, weather, textures, color palette.. etc.
Make the result unique and different from previous search results. ONLY RETURN YAML AND WITH ENGLISH CONTENT, NOT CHINESE - DO NOT ADD ANY OTHER COMMENT!
# Context
This is attempt {attempt_count} at generating search result number {search_count}.
# Input
Describe the first scene/shot for: "{query}".
# Output
```yaml
title: \""""
try:
print(f"search_video(): calling self.inference_client.text_generation({prompt}, model={TEXT_MODEL}, max_new_tokens=300, temperature=0.65)")
response = await asyncio.get_event_loop().run_in_executor(
None,
lambda: self.inference_client.text_generation(
prompt,
model=TEXT_MODEL,
max_new_tokens=330,
temperature=0.6
)
)
#print("response: ", response)
response_text = re.sub(r'^\s*\.\s*\n', '', f"title: \"{response.strip()}")
sanitized_yaml = sanitize_yaml_response(response_text)
try:
result = yaml.safe_load(sanitized_yaml)
except yaml.YAMLError as e:
logger.error(f"YAML parsing failed: {str(e)}")
result = None
if not result or not isinstance(result, dict):
logger.error(f"Invalid result format: {result}")
return None
# Extract fields with defaults
title = str(result.get('title', '')).strip() or 'Untitled Video'
description = str(result.get('description', '')).strip() or 'No description available'
tags = result.get('tags', [])
# Ensure tags is a list of strings
if not isinstance(tags, list):
tags = []
tags = [str(t).strip() for t in tags if t and isinstance(t, (str, int, float))]
# Generate thumbnail
#print(f"calling self.generate_thumbnail({title}, {description})")
try:
#thumbnail = await self.generate_thumbnail(title, description)
raise ValueError("thumbnail generation is too buggy and slow right now")
except Exception as e:
logger.error(f"Thumbnail generation failed: {str(e)}")
thumbnail = ""
print("got response thumbnail")
# Return valid result with all required fields
return {
'id': str(uuid.uuid4()),
'title': title,
'description': description,
'thumbnailUrl': thumbnail,
'videoUrl': '',
# not really used yet, maybe one day if we pre-generate or store content
'isLatent': True,
'useFixedSeed': "webcam" in description.lower(),
'seed': generate_seed(),
'views': 0,
'tags': tags
}
except Exception as e:
logger.error(f"Search video generation failed: {str(e)}")
return None
async def generate_thumbnail(self, title: str, description: str) -> str:
"""Generate thumbnail using HF image generation"""
try:
image_prompt = f"Thumbnail for video titled '{title}': {description}"
image = await asyncio.get_event_loop().run_in_executor(
None,
lambda: self.inference_client.text_to_image(
prompt=image_prompt,
model=IMAGE_MODEL,
width=768,
height=512
)
)
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode()
return f"data:image/jpeg;base64,{img_str}"
except Exception as e:
logger.error(f"Error generating thumbnail: {str(e)}")
return ""
async def generate_caption(self, title: str, description: str) -> str:
"""Generate detailed caption using HF text generation"""
try:
prompt = f"""Generate a detailed story for a video named: "{title}"
Visual description of the video: {description}.
Instructions: Write the story summary, including the plot, action, what should happen.
Make it around 200-300 words long.
A video can be anything from a tutorial, webcam, trailer, movie, live stream etc."""
response = await asyncio.get_event_loop().run_in_executor(
None,
lambda: self.inference_client.text_generation(
prompt,
model=TEXT_MODEL,
max_new_tokens=180,
temperature=0.7
)
)
if "Caption: " in response:
response = response.replace("Caption: ", "")
chunks = f" {response} ".split(". ")
if len(chunks) > 1:
text = ". ".join(chunks[:-1])
else:
text = response
return text.strip()
except Exception as e:
logger.error(f"Error generating caption: {str(e)}")
return ""
def get_config_value(self, role: UserRole, field: str, options: dict = None) -> Any:
"""
Get the appropriate config value for a user role.
Args:
role: The user role ('anon', 'normal', 'pro', 'admin')
field: The config field name to retrieve
options: Optional user-provided options that may override defaults
Returns:
The config value appropriate for the user's role with respect to
min/max boundaries and user overrides.
"""
# Select the appropriate config based on user role
if role == 'admin':
config = CONFIG_FOR_ADMIN_HF_USERS
elif role == 'pro':
config = CONFIG_FOR_PRO_HF_USERS
elif role == 'normal':
config = CONFIG_FOR_STANDARD_HF_USERS
else: # Anonymous users
config = CONFIG_FOR_ANONYMOUS_USERS
# Get the default value for this field from the config
default_value = config.get(f"default_{field}", None)
# For fields that have min/max bounds
min_field = f"min_{field}"
max_field = f"max_{field}"
# Check if min/max constraints exist for this field
has_constraints = min_field in config or max_field in config
if not has_constraints:
# For fields without constraints, just return the value from config
return default_value
# Get min and max values from config (if they exist)
min_value = config.get(min_field, None)
max_value = config.get(max_field, None)
# If user provided options with this field
if options and field in options:
user_value = options[field]
# Apply constraints if they exist
if min_value is not None and user_value < min_value:
return min_value
if max_value is not None and user_value > max_value:
return max_value
# If within bounds, use the user's value
return user_value
# If no user value, return the default
return default_value
async def _generate_clip_prompt(self, video_id: str, title: str, description: str) -> str:
"""Generate a new prompt for the next clip based on event history"""
events = self.video_events.get(video_id, [])
events_json = "\n".join(json.dumps(event) for event in events)
prompt = f"""# Context and task
Please write the caption for a new clip.
# Instructions
1. Consider the video context and recent events
2. Create a natural progression from previous clips
3. Take into account user suggestions (chat messages) into the scene
4. Don't generate hateful, political, violent or sexual content
5. Keep visual consistency with previous clips (in most cases you should repeat the same exact description of the location, characters etc but only change a few elements. If this is a webcam scenario, don't touch the camera orientation or focus)
6. Return ONLY the caption text, no additional formatting or explanation
7. Write in English, about 200 words.
8. Your caption must describe visual elements of the scene in details, including: camera angle and focus, people's appearance, age, look, costumes, clothes, the location visual characteristics and geometry, lighting, action, objects, weather, textures, lighting.
# Examples
Here is a demo scenario, with fake data:
{{"time": "2024-11-29T13:36:15Z", "event": "new_stream_clip", "caption": "webcam view of a beautiful park, squirrels are playing in the lush grass, blablabla etc... (rest omitted for brevity)"}}
{{"time": "2024-11-29T13:36:20Z", "event": "new_chat_message", "username": "MonkeyLover89", "data": "hi"}}
{{"time": "2024-11-29T13:36:25Z", "event": "new_chat_message", "username": "MonkeyLover89", "data": "more squirrels plz"}}
{{"time": "2024-11-29T13:36:26Z", "event": "new_stream_clip", "caption": "webcam view of a beautiful park, a lot of squirrels are playing in the lush grass, blablabla etc... (rest omitted for brevity)"}}
# Real scenario and data
We are inside a video titled "{title}"
The video is described by: "{description}".
Here is a summary of the {len(events)} most recent events:
{events_json}
# Your response
Your caption:"""
try:
response = await asyncio.get_event_loop().run_in_executor(
None,
lambda: self.inference_client.text_generation(
prompt,
model=TEXT_MODEL,
max_new_tokens=200,
temperature=0.7
)
)
# Clean up the response
caption = response.strip()
if caption.lower().startswith("caption:"):
caption = caption[8:].strip()
return caption
except Exception as e:
logger.error(f"Error generating clip prompt: {str(e)}")
# Fallback to original description if prompt generation fails
return description
async def generate_video(self, title: str, description: str, video_prompt_prefix: str, options: dict, user_role: UserRole = 'anon') -> str:
"""Generate video using available space from pool"""
video_id = options.get('video_id', str(uuid.uuid4()))
# Generate a new prompt based on event history
#clip_caption = await self._generate_clip_prompt(video_id, title, description)
clip_caption = f"{video_prompt_prefix} - {title.strip()} - {description.strip()}"
# Add the new clip to event history
self._add_event(video_id, {
"time": datetime.datetime.utcnow().isoformat() + "Z",
"event": "new_stream_clip",
"caption": clip_caption
})
# Use the generated caption as the prompt
prompt = f"{clip_caption}, {POSITIVE_PROMPT_SUFFIX}"
# Get the config values based on user role
width = self.get_config_value(user_role, 'clip_width', options)
height = self.get_config_value(user_role, 'clip_height', options)
num_frames = self.get_config_value(user_role, 'num_frames', options)
num_inference_steps = self.get_config_value(user_role, 'num_inference_steps', options)
frame_rate = self.get_config_value(user_role, 'clip_framerate', options)
# Log the user role and config values being used
logger.info(f"Generating video for user with role: {user_role}")
logger.info(f"Using config values: width={width}, height={height}, num_frames={num_frames}, steps={num_inference_steps}, fps={frame_rate}")
json_payload = {
"inputs": {
"prompt": prompt,
},
"parameters": {
# ------------------- settings for LTX-Video -----------------------
# this param doesn't exist
#"enhance_prompt_toggle": options.get('enhance_prompt', False),
"negative_prompt": options.get('negative_prompt', NEGATIVE_PROMPT),
# note about resolution:
# we cannot use 720 since it cannot be divided by 32
"width": width,
"height": height,
# this is a hack to fool LTX-Video into believing our input image is an actual video frame with poor encoding quality
#"input_image_quality": 70,
# LTX-Video requires a frame number divisible by 8, plus one frame
# note: glitches might appear if you use more than 168 frames
"num_frames": num_frames,
# using 30 steps seems to be enough for most cases, otherwise use 50 for best quality
# I think using a large number of steps (> 30) might create some overexposure and saturation
"num_inference_steps": num_inference_steps,
# values between 3.0 and 4.0 are nice
"guidance_scale": options.get('guidance_scale', GUIDANCE_SCALE),
"seed": options.get('seed', 42),
# ----------------------------------------------------------------
# ------------------- settings for Varnish -----------------------
# This will double the number of frames.
# You can activate this if you want:
# - a slow motion effect (in that case use double_num_frames=True and fps=24, 25 or 30)
# - a HD soap / video game effect (in that case use double_num_frames=True and fps=60)
"double_num_frames": False, # <- False as we want real-time generation
# controls the number of frames per second
# use this in combination with the num_frames and double_num_frames settings to control the duration and "feel" of your video
# typical values are: 24, 25, 30, 60
"fps": frame_rate,
# upscale the video using Real-ESRGAN.
# This upscaling algorithm is relatively fast,
# but might create an uncanny "3D render" or "drawing" effect.
"super_resolution": False, # <- False as we want real-time generation
# for cosmetic purposes and get a "cinematic" feel, you can optionally add some film grain.
# it is not recommended to add film grain if your theme doesn't match (film grain is great for black & white, retro looks)
# and if you do, adding more than 12% will start to negatively impact file size (video codecs aren't great are compressing film grain)
# 0% = no grain
# 10% = a bit of grain
"grain_amount": 0, # value between 0-100
# The range of the CRF scale is 0–51, where:
# 0 is lossless (for 8 bit only, for 10 bit use -qp 0)
# 23 is the default
# 51 is worst quality possible
# A lower value generally leads to higher quality, and a subjectively sane range is 17–28.
# Consider 17 or 18 to be visually lossless or nearly so;
# it should look the same or nearly the same as the input but it isn't technically lossless.
# The range is exponential, so increasing the CRF value +6 results in roughly half the bitrate / file size, while -6 leads to roughly twice the bitrate.
#"quality": 18,
}
}
async with self.endpoint_manager.get_endpoint() as endpoint:
logger.info(f"Using endpoint {endpoint.id} for video generation")
try:
async with ClientSession() as session:
async with session.post(
endpoint.url,
headers={
"Accept": "application/json",
"Authorization": f"Bearer {HF_TOKEN}",
"Content-Type": "application/json"
},
json=json_payload,
timeout=10 # Fast generation should complete within 10 seconds
) as response:
if response.status != 200:
error_text = await response.text()
# Mark endpoint as in error state
await self._mark_endpoint_error(endpoint)
raise Exception(f"Video generation failed: HTTP {response.status} - {error_text}")
result = await response.json()
if "error" in result:
# Mark endpoint as in error state
await self._mark_endpoint_error(endpoint)
raise Exception(f"Video generation failed: {result['error']}")
video_data_uri = result.get("video")
if not video_data_uri:
# Mark endpoint as in error state
await self._mark_endpoint_error(endpoint)
raise Exception("No video data in response")
# Reset error count on successful call
endpoint.error_count = 0
endpoint.error_until = 0
return video_data_uri
except asyncio.TimeoutError:
# Handle timeout specifically
await self._mark_endpoint_error(endpoint, is_timeout=True)
raise Exception(f"Endpoint {endpoint.id} timed out")
except Exception as e:
# Handle all other exceptions
if not isinstance(e, asyncio.TimeoutError): # Already handled above
await self._mark_endpoint_error(endpoint)
raise e
async def _mark_endpoint_error(self, endpoint: Endpoint, is_timeout: bool = False):
"""Mark an endpoint as being in error state with exponential backoff"""
async with self.endpoint_manager.lock:
endpoint.error_count += 1
# Calculate backoff time exponentially based on error count
# Start with 15 seconds, then 30, 60, etc. up to a max of 5 minutes
# Using shorter backoffs since generation should be fast
backoff_seconds = min(15 * (2 ** (endpoint.error_count - 1)), 300)
# Add extra backoff for timeouts which are more indicative of serious issues
if is_timeout:
backoff_seconds *= 2
endpoint.error_until = time.time() + backoff_seconds
logger.warning(
f"Endpoint {endpoint.id} marked as in error state (count: {endpoint.error_count}, "
f"unavailable until: {datetime.datetime.fromtimestamp(endpoint.error_until).strftime('%H:%M:%S')})"
)
async def handle_chat_message(self, data: dict, ws: web.WebSocketResponse) -> dict:
"""Process and broadcast a chat message"""
video_id = data.get('videoId')
request_id = data.get('requestId')
if not video_id:
return {
'action': 'chat_message',
'requestId': request_id,
'success': False,
'error': 'No video ID provided'
}
# Add chat message to event history
self._add_event(video_id, {
"time": datetime.datetime.utcnow().isoformat() + "Z",
"event": "new_chat_message",
"username": data.get('username', 'Anonymous'),
"data": data.get('content', '')
})
room = self.chat_rooms[video_id]
message_data = {k: v for k, v in data.items() if k != '_ws'}
room.add_message(message_data)
for client in room.connected_clients:
if client != ws:
try:
await client.send_json({
'action': 'chat_message',
'broadcast': True,
**message_data
})
except Exception as e:
logger.error(f"Failed to broadcast to client: {e}")
room.connected_clients.remove(client)
return {
'action': 'chat_message',
'requestId': request_id,
'success': True,
'message': message_data
}
async def handle_join_chat(self, data: dict, ws: web.WebSocketResponse) -> dict:
"""Handle a request to join a chat room"""
video_id = data.get('videoId')
request_id = data.get('requestId')
if not video_id:
return {
'action': 'join_chat',
'requestId': request_id,
'success': False,
'error': 'No video ID provided'
}
room = self.chat_rooms[video_id]
room.connected_clients.add(ws)
recent_messages = room.get_recent_messages()
return {
'action': 'join_chat',
'requestId': request_id,
'success': True,
'messages': recent_messages
}
async def handle_leave_chat(self, data: dict, ws: web.WebSocketResponse) -> dict:
"""Handle a request to leave a chat room"""
video_id = data.get('videoId')
request_id = data.get('requestId')
if not video_id:
return {
'action': 'leave_chat',
'requestId': request_id,
'success': False,
'error': 'No video ID provided'
}
room = self.chat_rooms[video_id]
if ws in room.connected_clients:
room.connected_clients.remove(ws)
return {
'action': 'leave_chat',
'requestId': request_id,
'success': True
}