Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import logging | |
import os | |
import io | |
import re | |
import base64 | |
import uuid | |
from typing import Dict, Any, Optional, List, Literal | |
from dataclasses import dataclass | |
from asyncio import Lock, Queue | |
import asyncio | |
import time | |
import datetime | |
from contextlib import asynccontextmanager | |
from collections import defaultdict | |
from aiohttp import web, ClientSession | |
from huggingface_hub import InferenceClient, HfApi | |
from gradio_client import Client | |
import random | |
import yaml | |
import json | |
from api_config import * | |
# User role type | |
UserRole = Literal['anon', 'normal', 'pro', 'admin'] | |
# Configure logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' | |
) | |
logger = logging.getLogger(__name__) | |
def generate_seed(): | |
"""Generate a random positive 32-bit integer seed.""" | |
return random.randint(0, 2**32 - 1) | |
def sanitize_yaml_response(response_text: str) -> str: | |
""" | |
Sanitize and format AI response into valid YAML. | |
Returns properly formatted YAML string. | |
""" | |
response_text = response_text.split("```")[0] | |
# Remove any markdown code block indicators and YAML document markers | |
clean_text = re.sub(r'```yaml|```|---|\.\.\.$', '', response_text.strip()) | |
# Split into lines and process each line | |
lines = clean_text.split('\n') | |
sanitized_lines = [] | |
current_field = None | |
for line in lines: | |
stripped = line.strip() | |
if not stripped: | |
continue | |
# Handle field starts | |
if stripped.startswith('title:') or stripped.startswith('description:'): | |
# Ensure proper YAML format with space after colon and proper quoting | |
field_name = stripped.split(':', 1)[0] | |
field_value = stripped.split(':', 1)[1].strip().strip('"\'') | |
# Quote the value if it contains special characters | |
if any(c in field_value for c in ':[]{},&*#?|-<>=!%@`'): | |
field_value = f'"{field_value}"' | |
sanitized_lines.append(f"{field_name}: {field_value}") | |
current_field = field_name | |
elif stripped.startswith('tags:'): | |
sanitized_lines.append('tags:') | |
current_field = 'tags' | |
elif stripped.startswith('-') and current_field == 'tags': | |
# Process tag values | |
tag = stripped[1:].strip().strip('"\'') | |
if tag: | |
# Clean and format tag | |
tag = re.sub(r'[^\x00-\x7F]+', '', tag) # Remove non-ASCII | |
tag = re.sub(r'[^a-zA-Z0-9\s-]', '', tag) # Keep only alphanumeric and hyphen | |
tag = tag.strip().lower().replace(' ', '-') | |
if tag: | |
sanitized_lines.append(f" - {tag}") | |
elif current_field in ['title', 'description']: | |
# Handle multi-line title/description continuation | |
value = stripped.strip('"\'') | |
if value: | |
# Append to previous line | |
prev = sanitized_lines[-1] | |
sanitized_lines[-1] = f"{prev} {value}" | |
# Ensure the YAML has all required fields | |
required_fields = {'title', 'description', 'tags'} | |
found_fields = {line.split(':')[0].strip() for line in sanitized_lines if ':' in line} | |
for field in required_fields - found_fields: | |
if field == 'tags': | |
sanitized_lines.extend(['tags:', ' - default']) | |
else: | |
sanitized_lines.append(f'{field}: "No {field} provided"') | |
return '\n'.join(sanitized_lines) | |
class Endpoint: | |
id: int | |
url: str | |
busy: bool = False | |
last_used: float = 0 | |
error_count: int = 0 | |
error_until: float = 0 # Timestamp until which this endpoint is considered in error state | |
class EndpointManager: | |
def __init__(self): | |
self.endpoints: List[Endpoint] = [] | |
self.lock = Lock() | |
self.initialize_endpoints() | |
self.last_used_index = -1 # Track the last used endpoint for round-robin | |
def initialize_endpoints(self): | |
"""Initialize the list of endpoints""" | |
for i, url in enumerate(VIDEO_ROUND_ROBIN_ENDPOINT_URLS): | |
endpoint = Endpoint(id=i + 1, url=url) | |
self.endpoints.append(endpoint) | |
def _get_next_free_endpoint(self): | |
"""Get the next available non-busy endpoint, or oldest endpoint if all are busy""" | |
current_time = time.time() | |
# First priority: Get any non-busy and non-error endpoint | |
free_endpoints = [ | |
ep for ep in self.endpoints | |
if not ep.busy and current_time > ep.error_until | |
] | |
if free_endpoints: | |
# Return the least recently used free endpoint | |
return min(free_endpoints, key=lambda ep: ep.last_used) | |
# Second priority: If all busy/error, use round-robin but skip error endpoints | |
tried_count = 0 | |
next_index = self.last_used_index | |
while tried_count < len(self.endpoints): | |
next_index = (next_index + 1) % len(self.endpoints) | |
tried_count += 1 | |
# If endpoint is not in error state, use it | |
if current_time > self.endpoints[next_index].error_until: | |
self.last_used_index = next_index | |
return self.endpoints[next_index] | |
# If all endpoints are in error state, use the one with earliest error expiry | |
self.last_used_index = next_index | |
return min(self.endpoints, key=lambda ep: ep.error_until) | |
async def get_endpoint(self, max_wait_time: int = 10): | |
"""Get the next available endpoint using a context manager""" | |
start_time = time.time() | |
endpoint = None | |
try: | |
while True: | |
if time.time() - start_time > max_wait_time: | |
raise TimeoutError(f"Could not acquire an endpoint within {max_wait_time} seconds") | |
async with self.lock: | |
# Get the next available endpoint using our selection strategy | |
endpoint = self._get_next_free_endpoint() | |
# Mark it as busy | |
endpoint.busy = True | |
endpoint.last_used = time.time() | |
logger.info(f"Using endpoint {endpoint.id} (busy: {endpoint.busy}, last used: {endpoint.last_used})") | |
break | |
yield endpoint | |
finally: | |
if endpoint: | |
async with self.lock: | |
endpoint.busy = False | |
endpoint.last_used = time.time() | |
# We don't need to put back into queue - our strategy now picks directly from the list | |
class ChatRoom: | |
def __init__(self): | |
self.messages = [] | |
self.connected_clients = set() | |
self.max_history = 100 | |
def add_message(self, message): | |
self.messages.append(message) | |
if len(self.messages) > self.max_history: | |
self.messages.pop(0) | |
def get_recent_messages(self, limit=50): | |
return self.messages[-limit:] | |
class VideoGenerationAPI: | |
def __init__(self): | |
self.inference_client = InferenceClient(token=HF_TOKEN) | |
self.hf_api = HfApi(token=HF_TOKEN) | |
self.endpoint_manager = EndpointManager() | |
self.active_requests: Dict[str, asyncio.Future] = {} | |
self.chat_rooms = defaultdict(ChatRoom) | |
self.video_events: Dict[str, List[Dict[str, Any]]] = defaultdict(list) | |
self.event_history_limit = 50 | |
# Cache for user roles to avoid repeated API calls | |
self.user_role_cache: Dict[str, Dict[str, Any]] = {} | |
# Cache expiration time (10 minutes) | |
self.cache_expiration = 600 | |
def _add_event(self, video_id: str, event: Dict[str, Any]): | |
"""Add an event to the video's history and maintain the size limit""" | |
events = self.video_events[video_id] | |
events.append(event) | |
if len(events) > self.event_history_limit: | |
events.pop(0) | |
async def validate_user_token(self, token: str) -> UserRole: | |
""" | |
Validates a Hugging Face token and determines the user's role. | |
Returns one of: | |
- 'anon': Anonymous user (no token or invalid token) | |
- 'normal': Standard Hugging Face user | |
- 'pro': Hugging Face Pro user | |
- 'admin': Admin user (username in ADMIN_ACCOUNTS) | |
""" | |
# If no token is provided, the user is anonymous | |
if not token: | |
return 'anon' | |
# Check if we have a cached result for this token | |
current_time = time.time() | |
if token in self.user_role_cache: | |
cached_data = self.user_role_cache[token] | |
# If the cache is still valid | |
if current_time - cached_data['timestamp'] < self.cache_expiration: | |
logger.info(f"Using cached user role: {cached_data['role']}") | |
return cached_data['role'] | |
# No valid cache, need to check the token with the HF API | |
try: | |
# Use HF API to validate the token and get user info | |
logger.info("Validating Hugging Face token...") | |
# Run in executor to avoid blocking the event loop | |
user_info = await asyncio.get_event_loop().run_in_executor( | |
None, | |
lambda: self.hf_api.whoami(token=token) | |
) | |
logger.info(f"Token valid for user: {user_info.name}") | |
# Determine the user role based on the information | |
user_role: UserRole | |
# Check if the user is an admin | |
if user_info.name in ADMIN_ACCOUNTS: | |
user_role = 'admin' | |
# Check if the user has a pro account | |
elif hasattr(user_info, 'is_pro') and user_info.is_pro: | |
user_role = 'pro' | |
else: | |
user_role = 'normal' | |
# Cache the result | |
self.user_role_cache[token] = { | |
'role': user_role, | |
'timestamp': current_time, | |
'username': user_info.name | |
} | |
return user_role | |
except Exception as e: | |
logger.error(f"Failed to validate Hugging Face token: {str(e)}") | |
# If validation fails, the user is treated as anonymous | |
return 'anon' | |
async def download_video(self, url: str) -> bytes: | |
"""Download video file from URL and return bytes""" | |
async with ClientSession() as session: | |
async with session.get(url) as response: | |
if response.status != 200: | |
raise Exception(f"Failed to download video: HTTP {response.status}") | |
return await response.read() | |
async def search_video(self, query: str, search_count: int = 0, attempt_count: int = 0) -> Optional[dict]: | |
"""Generate a single search result using HF text generation""" | |
prompt = f"""# Instruction | |
Your response MUST be a YAML object containing a title, description, and tags, consistent with what we can find on a video sharing platform. | |
Format your YAML response with only those fields: "title" (a short string), "description" (string caption of the scene), and "tags" (array of 3 to 4 strings). Do not add any other field. | |
In the description field, describe in a very synthetic way the visuals of the first shot (first scene), eg "<STYLE>, medium close-up shot, high angle view of a <AGE>yo <GENDER> <CHARACTERS> <ACTIONS>, <LOCATION> <LIGHTING> <WEATHER>". Keep it minimalist but still descriptive, don't use bullets points, use simple words, go to the essential to describe style (cinematic, documentary footage, 3D rendering..), camera modes and angles, characters, age, gender, action, location, lighting, country, costume, time, weather, textures, color palette.. etc. | |
Make the result unique and different from previous search results. ONLY RETURN YAML AND WITH ENGLISH CONTENT, NOT CHINESE - DO NOT ADD ANY OTHER COMMENT! | |
# Context | |
This is attempt {attempt_count} at generating search result number {search_count}. | |
# Input | |
Describe the first scene/shot for: "{query}". | |
# Output | |
```yaml | |
title: \"""" | |
try: | |
print(f"search_video(): calling self.inference_client.text_generation({prompt}, model={TEXT_MODEL}, max_new_tokens=300, temperature=0.65)") | |
response = await asyncio.get_event_loop().run_in_executor( | |
None, | |
lambda: self.inference_client.text_generation( | |
prompt, | |
model=TEXT_MODEL, | |
max_new_tokens=330, | |
temperature=0.6 | |
) | |
) | |
#print("response: ", response) | |
response_text = re.sub(r'^\s*\.\s*\n', '', f"title: \"{response.strip()}") | |
sanitized_yaml = sanitize_yaml_response(response_text) | |
try: | |
result = yaml.safe_load(sanitized_yaml) | |
except yaml.YAMLError as e: | |
logger.error(f"YAML parsing failed: {str(e)}") | |
result = None | |
if not result or not isinstance(result, dict): | |
logger.error(f"Invalid result format: {result}") | |
return None | |
# Extract fields with defaults | |
title = str(result.get('title', '')).strip() or 'Untitled Video' | |
description = str(result.get('description', '')).strip() or 'No description available' | |
tags = result.get('tags', []) | |
# Ensure tags is a list of strings | |
if not isinstance(tags, list): | |
tags = [] | |
tags = [str(t).strip() for t in tags if t and isinstance(t, (str, int, float))] | |
# Generate thumbnail | |
#print(f"calling self.generate_thumbnail({title}, {description})") | |
try: | |
#thumbnail = await self.generate_thumbnail(title, description) | |
raise ValueError("thumbnail generation is too buggy and slow right now") | |
except Exception as e: | |
logger.error(f"Thumbnail generation failed: {str(e)}") | |
thumbnail = "" | |
print("got response thumbnail") | |
# Return valid result with all required fields | |
return { | |
'id': str(uuid.uuid4()), | |
'title': title, | |
'description': description, | |
'thumbnailUrl': thumbnail, | |
'videoUrl': '', | |
# not really used yet, maybe one day if we pre-generate or store content | |
'isLatent': True, | |
'useFixedSeed': "webcam" in description.lower(), | |
'seed': generate_seed(), | |
'views': 0, | |
'tags': tags | |
} | |
except Exception as e: | |
logger.error(f"Search video generation failed: {str(e)}") | |
return None | |
async def generate_thumbnail(self, title: str, description: str) -> str: | |
"""Generate thumbnail using HF image generation""" | |
try: | |
image_prompt = f"Thumbnail for video titled '{title}': {description}" | |
image = await asyncio.get_event_loop().run_in_executor( | |
None, | |
lambda: self.inference_client.text_to_image( | |
prompt=image_prompt, | |
model=IMAGE_MODEL, | |
width=768, | |
height=512 | |
) | |
) | |
buffered = io.BytesIO() | |
image.save(buffered, format="JPEG") | |
img_str = base64.b64encode(buffered.getvalue()).decode() | |
return f"data:image/jpeg;base64,{img_str}" | |
except Exception as e: | |
logger.error(f"Error generating thumbnail: {str(e)}") | |
return "" | |
async def generate_caption(self, title: str, description: str) -> str: | |
"""Generate detailed caption using HF text generation""" | |
try: | |
prompt = f"""Generate a detailed story for a video named: "{title}" | |
Visual description of the video: {description}. | |
Instructions: Write the story summary, including the plot, action, what should happen. | |
Make it around 200-300 words long. | |
A video can be anything from a tutorial, webcam, trailer, movie, live stream etc.""" | |
response = await asyncio.get_event_loop().run_in_executor( | |
None, | |
lambda: self.inference_client.text_generation( | |
prompt, | |
model=TEXT_MODEL, | |
max_new_tokens=180, | |
temperature=0.7 | |
) | |
) | |
if "Caption: " in response: | |
response = response.replace("Caption: ", "") | |
chunks = f" {response} ".split(". ") | |
if len(chunks) > 1: | |
text = ". ".join(chunks[:-1]) | |
else: | |
text = response | |
return text.strip() | |
except Exception as e: | |
logger.error(f"Error generating caption: {str(e)}") | |
return "" | |
def get_config_value(self, role: UserRole, field: str, options: dict = None) -> Any: | |
""" | |
Get the appropriate config value for a user role. | |
Args: | |
role: The user role ('anon', 'normal', 'pro', 'admin') | |
field: The config field name to retrieve | |
options: Optional user-provided options that may override defaults | |
Returns: | |
The config value appropriate for the user's role with respect to | |
min/max boundaries and user overrides. | |
""" | |
# Select the appropriate config based on user role | |
if role == 'admin': | |
config = CONFIG_FOR_ADMIN_HF_USERS | |
elif role == 'pro': | |
config = CONFIG_FOR_PRO_HF_USERS | |
elif role == 'normal': | |
config = CONFIG_FOR_STANDARD_HF_USERS | |
else: # Anonymous users | |
config = CONFIG_FOR_ANONYMOUS_USERS | |
# Get the default value for this field from the config | |
default_value = config.get(f"default_{field}", None) | |
# For fields that have min/max bounds | |
min_field = f"min_{field}" | |
max_field = f"max_{field}" | |
# Check if min/max constraints exist for this field | |
has_constraints = min_field in config or max_field in config | |
if not has_constraints: | |
# For fields without constraints, just return the value from config | |
return default_value | |
# Get min and max values from config (if they exist) | |
min_value = config.get(min_field, None) | |
max_value = config.get(max_field, None) | |
# If user provided options with this field | |
if options and field in options: | |
user_value = options[field] | |
# Apply constraints if they exist | |
if min_value is not None and user_value < min_value: | |
return min_value | |
if max_value is not None and user_value > max_value: | |
return max_value | |
# If within bounds, use the user's value | |
return user_value | |
# If no user value, return the default | |
return default_value | |
async def _generate_clip_prompt(self, video_id: str, title: str, description: str) -> str: | |
"""Generate a new prompt for the next clip based on event history""" | |
events = self.video_events.get(video_id, []) | |
events_json = "\n".join(json.dumps(event) for event in events) | |
prompt = f"""# Context and task | |
Please write the caption for a new clip. | |
# Instructions | |
1. Consider the video context and recent events | |
2. Create a natural progression from previous clips | |
3. Take into account user suggestions (chat messages) into the scene | |
4. Don't generate hateful, political, violent or sexual content | |
5. Keep visual consistency with previous clips (in most cases you should repeat the same exact description of the location, characters etc but only change a few elements. If this is a webcam scenario, don't touch the camera orientation or focus) | |
6. Return ONLY the caption text, no additional formatting or explanation | |
7. Write in English, about 200 words. | |
8. Your caption must describe visual elements of the scene in details, including: camera angle and focus, people's appearance, age, look, costumes, clothes, the location visual characteristics and geometry, lighting, action, objects, weather, textures, lighting. | |
# Examples | |
Here is a demo scenario, with fake data: | |
{{"time": "2024-11-29T13:36:15Z", "event": "new_stream_clip", "caption": "webcam view of a beautiful park, squirrels are playing in the lush grass, blablabla etc... (rest omitted for brevity)"}} | |
{{"time": "2024-11-29T13:36:20Z", "event": "new_chat_message", "username": "MonkeyLover89", "data": "hi"}} | |
{{"time": "2024-11-29T13:36:25Z", "event": "new_chat_message", "username": "MonkeyLover89", "data": "more squirrels plz"}} | |
{{"time": "2024-11-29T13:36:26Z", "event": "new_stream_clip", "caption": "webcam view of a beautiful park, a lot of squirrels are playing in the lush grass, blablabla etc... (rest omitted for brevity)"}} | |
# Real scenario and data | |
We are inside a video titled "{title}" | |
The video is described by: "{description}". | |
Here is a summary of the {len(events)} most recent events: | |
{events_json} | |
# Your response | |
Your caption:""" | |
try: | |
response = await asyncio.get_event_loop().run_in_executor( | |
None, | |
lambda: self.inference_client.text_generation( | |
prompt, | |
model=TEXT_MODEL, | |
max_new_tokens=200, | |
temperature=0.7 | |
) | |
) | |
# Clean up the response | |
caption = response.strip() | |
if caption.lower().startswith("caption:"): | |
caption = caption[8:].strip() | |
return caption | |
except Exception as e: | |
logger.error(f"Error generating clip prompt: {str(e)}") | |
# Fallback to original description if prompt generation fails | |
return description | |
async def generate_video(self, title: str, description: str, video_prompt_prefix: str, options: dict, user_role: UserRole = 'anon') -> str: | |
"""Generate video using available space from pool""" | |
video_id = options.get('video_id', str(uuid.uuid4())) | |
# Generate a new prompt based on event history | |
#clip_caption = await self._generate_clip_prompt(video_id, title, description) | |
clip_caption = f"{video_prompt_prefix} - {title.strip()} - {description.strip()}" | |
# Add the new clip to event history | |
self._add_event(video_id, { | |
"time": datetime.datetime.utcnow().isoformat() + "Z", | |
"event": "new_stream_clip", | |
"caption": clip_caption | |
}) | |
# Use the generated caption as the prompt | |
prompt = f"{clip_caption}, {POSITIVE_PROMPT_SUFFIX}" | |
# Get the config values based on user role | |
width = self.get_config_value(user_role, 'clip_width', options) | |
height = self.get_config_value(user_role, 'clip_height', options) | |
num_frames = self.get_config_value(user_role, 'num_frames', options) | |
num_inference_steps = self.get_config_value(user_role, 'num_inference_steps', options) | |
frame_rate = self.get_config_value(user_role, 'clip_framerate', options) | |
# Log the user role and config values being used | |
logger.info(f"Generating video for user with role: {user_role}") | |
logger.info(f"Using config values: width={width}, height={height}, num_frames={num_frames}, steps={num_inference_steps}, fps={frame_rate}") | |
json_payload = { | |
"inputs": { | |
"prompt": prompt, | |
}, | |
"parameters": { | |
# ------------------- settings for LTX-Video ----------------------- | |
# this param doesn't exist | |
#"enhance_prompt_toggle": options.get('enhance_prompt', False), | |
"negative_prompt": options.get('negative_prompt', NEGATIVE_PROMPT), | |
# note about resolution: | |
# we cannot use 720 since it cannot be divided by 32 | |
"width": width, | |
"height": height, | |
# this is a hack to fool LTX-Video into believing our input image is an actual video frame with poor encoding quality | |
#"input_image_quality": 70, | |
# LTX-Video requires a frame number divisible by 8, plus one frame | |
# note: glitches might appear if you use more than 168 frames | |
"num_frames": num_frames, | |
# using 30 steps seems to be enough for most cases, otherwise use 50 for best quality | |
# I think using a large number of steps (> 30) might create some overexposure and saturation | |
"num_inference_steps": num_inference_steps, | |
# values between 3.0 and 4.0 are nice | |
"guidance_scale": options.get('guidance_scale', GUIDANCE_SCALE), | |
"seed": options.get('seed', 42), | |
# ---------------------------------------------------------------- | |
# ------------------- settings for Varnish ----------------------- | |
# This will double the number of frames. | |
# You can activate this if you want: | |
# - a slow motion effect (in that case use double_num_frames=True and fps=24, 25 or 30) | |
# - a HD soap / video game effect (in that case use double_num_frames=True and fps=60) | |
"double_num_frames": False, # <- False as we want real-time generation | |
# controls the number of frames per second | |
# use this in combination with the num_frames and double_num_frames settings to control the duration and "feel" of your video | |
# typical values are: 24, 25, 30, 60 | |
"fps": frame_rate, | |
# upscale the video using Real-ESRGAN. | |
# This upscaling algorithm is relatively fast, | |
# but might create an uncanny "3D render" or "drawing" effect. | |
"super_resolution": False, # <- False as we want real-time generation | |
# for cosmetic purposes and get a "cinematic" feel, you can optionally add some film grain. | |
# it is not recommended to add film grain if your theme doesn't match (film grain is great for black & white, retro looks) | |
# and if you do, adding more than 12% will start to negatively impact file size (video codecs aren't great are compressing film grain) | |
# 0% = no grain | |
# 10% = a bit of grain | |
"grain_amount": 0, # value between 0-100 | |
# The range of the CRF scale is 0–51, where: | |
# 0 is lossless (for 8 bit only, for 10 bit use -qp 0) | |
# 23 is the default | |
# 51 is worst quality possible | |
# A lower value generally leads to higher quality, and a subjectively sane range is 17–28. | |
# Consider 17 or 18 to be visually lossless or nearly so; | |
# it should look the same or nearly the same as the input but it isn't technically lossless. | |
# The range is exponential, so increasing the CRF value +6 results in roughly half the bitrate / file size, while -6 leads to roughly twice the bitrate. | |
#"quality": 18, | |
} | |
} | |
async with self.endpoint_manager.get_endpoint() as endpoint: | |
logger.info(f"Using endpoint {endpoint.id} for video generation") | |
try: | |
async with ClientSession() as session: | |
async with session.post( | |
endpoint.url, | |
headers={ | |
"Accept": "application/json", | |
"Authorization": f"Bearer {HF_TOKEN}", | |
"Content-Type": "application/json" | |
}, | |
json=json_payload, | |
timeout=10 # Fast generation should complete within 10 seconds | |
) as response: | |
if response.status != 200: | |
error_text = await response.text() | |
# Mark endpoint as in error state | |
await self._mark_endpoint_error(endpoint) | |
raise Exception(f"Video generation failed: HTTP {response.status} - {error_text}") | |
result = await response.json() | |
if "error" in result: | |
# Mark endpoint as in error state | |
await self._mark_endpoint_error(endpoint) | |
raise Exception(f"Video generation failed: {result['error']}") | |
video_data_uri = result.get("video") | |
if not video_data_uri: | |
# Mark endpoint as in error state | |
await self._mark_endpoint_error(endpoint) | |
raise Exception("No video data in response") | |
# Reset error count on successful call | |
endpoint.error_count = 0 | |
endpoint.error_until = 0 | |
return video_data_uri | |
except asyncio.TimeoutError: | |
# Handle timeout specifically | |
await self._mark_endpoint_error(endpoint, is_timeout=True) | |
raise Exception(f"Endpoint {endpoint.id} timed out") | |
except Exception as e: | |
# Handle all other exceptions | |
if not isinstance(e, asyncio.TimeoutError): # Already handled above | |
await self._mark_endpoint_error(endpoint) | |
raise e | |
async def _mark_endpoint_error(self, endpoint: Endpoint, is_timeout: bool = False): | |
"""Mark an endpoint as being in error state with exponential backoff""" | |
async with self.endpoint_manager.lock: | |
endpoint.error_count += 1 | |
# Calculate backoff time exponentially based on error count | |
# Start with 15 seconds, then 30, 60, etc. up to a max of 5 minutes | |
# Using shorter backoffs since generation should be fast | |
backoff_seconds = min(15 * (2 ** (endpoint.error_count - 1)), 300) | |
# Add extra backoff for timeouts which are more indicative of serious issues | |
if is_timeout: | |
backoff_seconds *= 2 | |
endpoint.error_until = time.time() + backoff_seconds | |
logger.warning( | |
f"Endpoint {endpoint.id} marked as in error state (count: {endpoint.error_count}, " | |
f"unavailable until: {datetime.datetime.fromtimestamp(endpoint.error_until).strftime('%H:%M:%S')})" | |
) | |
async def handle_chat_message(self, data: dict, ws: web.WebSocketResponse) -> dict: | |
"""Process and broadcast a chat message""" | |
video_id = data.get('videoId') | |
request_id = data.get('requestId') | |
if not video_id: | |
return { | |
'action': 'chat_message', | |
'requestId': request_id, | |
'success': False, | |
'error': 'No video ID provided' | |
} | |
# Add chat message to event history | |
self._add_event(video_id, { | |
"time": datetime.datetime.utcnow().isoformat() + "Z", | |
"event": "new_chat_message", | |
"username": data.get('username', 'Anonymous'), | |
"data": data.get('content', '') | |
}) | |
room = self.chat_rooms[video_id] | |
message_data = {k: v for k, v in data.items() if k != '_ws'} | |
room.add_message(message_data) | |
for client in room.connected_clients: | |
if client != ws: | |
try: | |
await client.send_json({ | |
'action': 'chat_message', | |
'broadcast': True, | |
**message_data | |
}) | |
except Exception as e: | |
logger.error(f"Failed to broadcast to client: {e}") | |
room.connected_clients.remove(client) | |
return { | |
'action': 'chat_message', | |
'requestId': request_id, | |
'success': True, | |
'message': message_data | |
} | |
async def handle_join_chat(self, data: dict, ws: web.WebSocketResponse) -> dict: | |
"""Handle a request to join a chat room""" | |
video_id = data.get('videoId') | |
request_id = data.get('requestId') | |
if not video_id: | |
return { | |
'action': 'join_chat', | |
'requestId': request_id, | |
'success': False, | |
'error': 'No video ID provided' | |
} | |
room = self.chat_rooms[video_id] | |
room.connected_clients.add(ws) | |
recent_messages = room.get_recent_messages() | |
return { | |
'action': 'join_chat', | |
'requestId': request_id, | |
'success': True, | |
'messages': recent_messages | |
} | |
async def handle_leave_chat(self, data: dict, ws: web.WebSocketResponse) -> dict: | |
"""Handle a request to leave a chat room""" | |
video_id = data.get('videoId') | |
request_id = data.get('requestId') | |
if not video_id: | |
return { | |
'action': 'leave_chat', | |
'requestId': request_id, | |
'success': False, | |
'error': 'No video ID provided' | |
} | |
room = self.chat_rooms[video_id] | |
if ws in room.connected_clients: | |
room.connected_clients.remove(ws) | |
return { | |
'action': 'leave_chat', | |
'requestId': request_id, | |
'success': True | |
} |