Spaces:
Running
Running
File size: 41,101 Bytes
80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 ecd5028 80ebcb3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 |
import pathlib
import random
from typing import Any, Dict, List, Optional, Tuple, Union
import datasets
import datasets.data_files
import datasets.distributed
import datasets.exceptions
import huggingface_hub
import huggingface_hub.errors
import numpy as np
import PIL.Image
import torch
import torch.distributed.checkpoint.stateful
from diffusers.utils import load_image, load_video
from huggingface_hub import list_repo_files, repo_exists, snapshot_download
from tqdm.auto import tqdm
from .. import constants
from .. import functional as FF
from ..logging import get_logger
from . import utils
import decord # isort:skip
decord.bridge.set_bridge("torch")
logger = get_logger()
# fmt: off
MAX_PRECOMPUTABLE_ITEMS_LIMIT = 1024
COMMON_CAPTION_FILES = ["prompt.txt", "prompts.txt", "caption.txt", "captions.txt"]
COMMON_VIDEO_FILES = ["video.txt", "videos.txt"]
COMMON_IMAGE_FILES = ["image.txt", "images.txt"]
COMMON_WDS_CAPTION_COLUMN_NAMES = ["txt", "text", "caption", "captions", "short_caption", "long_caption", "prompt", "prompts", "short_prompt", "long_prompt", "description", "descriptions", "alt_text", "alt_texts", "alt_caption", "alt_captions", "alt_prompt", "alt_prompts", "alt_description", "alt_descriptions", "image_description", "image_descriptions", "image_caption", "image_captions", "image_prompt", "image_prompts", "image_alt_text", "image_alt_texts", "image_alt_caption", "image_alt_captions", "image_alt_prompt", "image_alt_prompts", "image_alt_description", "image_alt_descriptions", "video_description", "video_descriptions", "video_caption", "video_captions", "video_prompt", "video_prompts", "video_alt_text", "video_alt_texts", "video_alt_caption", "video_alt_captions", "video_alt_prompt", "video_alt_prompts", "video_alt_description"]
# fmt: on
class ImageCaptionFilePairDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
def __init__(self, root: str, infinite: bool = False) -> None:
super().__init__()
self.root = pathlib.Path(root)
self.infinite = infinite
data = []
caption_files = sorted(utils.find_files(self.root.as_posix(), "*.txt", depth=0))
for caption_file in caption_files:
data_file = self._find_data_file(caption_file)
if data_file:
data.append(
{
"caption": (self.root / caption_file).as_posix(),
"image": (self.root / data_file).as_posix(),
}
)
data = datasets.Dataset.from_list(data)
data = data.cast_column("image", datasets.Image(mode="RGB"))
self._data = data.to_iterable_dataset()
self._sample_index = 0
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
def _get_data_iter(self):
if self._sample_index == 0:
return iter(self._data)
return iter(self._data.skip(self._sample_index))
def __iter__(self):
while True:
for sample in self._get_data_iter():
self._sample_index += 1
sample["caption"] = _read_caption_from_file(sample["caption"])
sample["image"] = _preprocess_image(sample["image"])
yield sample
if not self.infinite:
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
break
else:
self._sample_index = 0
def load_state_dict(self, state_dict):
self._sample_index = state_dict["sample_index"]
def state_dict(self):
return {"sample_index": self._sample_index}
def _find_data_file(self, caption_file: str) -> str:
caption_file = pathlib.Path(caption_file)
data_file = None
found_data = 0
for extension in constants.SUPPORTED_IMAGE_FILE_EXTENSIONS:
image_filename = caption_file.with_suffix(f".{extension}")
if image_filename.exists():
found_data += 1
data_file = image_filename
if found_data == 0:
return False
elif found_data > 1:
raise ValueError(
f"Multiple data files found for caption file {caption_file}. Please ensure there is only one data "
f"file per caption file. The following extensions are supported:\n"
f" - Images: {constants.SUPPORTED_IMAGE_FILE_EXTENSIONS}\n"
)
return data_file.as_posix()
class VideoCaptionFilePairDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
def __init__(self, root: str, infinite: bool = False) -> None:
super().__init__()
self.root = pathlib.Path(root)
self.infinite = infinite
data = []
caption_files = sorted(utils.find_files(self.root.as_posix(), "*.txt", depth=0))
for caption_file in caption_files:
data_file = self._find_data_file(caption_file)
if data_file:
data.append(
{
"caption": (self.root / caption_file).as_posix(),
"video": (self.root / data_file).as_posix(),
}
)
data = datasets.Dataset.from_list(data)
data = data.cast_column("video", datasets.Video())
self._data = data.to_iterable_dataset()
self._sample_index = 0
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
def _get_data_iter(self):
if self._sample_index == 0:
return iter(self._data)
return iter(self._data.skip(self._sample_index))
def __iter__(self):
while True:
for sample in self._get_data_iter():
self._sample_index += 1
sample["caption"] = _read_caption_from_file(sample["caption"])
sample["video"] = _preprocess_video(sample["video"])
yield sample
if not self.infinite:
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
break
else:
self._sample_index = 0
def load_state_dict(self, state_dict):
self._sample_index = state_dict["sample_index"]
def state_dict(self):
return {"sample_index": self._sample_index}
def _find_data_file(self, caption_file: str) -> str:
caption_file = pathlib.Path(caption_file)
data_file = None
found_data = 0
for extension in constants.SUPPORTED_VIDEO_FILE_EXTENSIONS:
video_filename = caption_file.with_suffix(f".{extension}")
if video_filename.exists():
found_data += 1
data_file = video_filename
if found_data == 0:
return False
elif found_data > 1:
raise ValueError(
f"Multiple data files found for caption file {caption_file}. Please ensure there is only one data "
f"file per caption file. The following extensions are supported:\n"
f" - Videos: {constants.SUPPORTED_VIDEO_FILE_EXTENSIONS}\n"
)
return data_file.as_posix()
class ImageFileCaptionFileListDataset(
torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful
):
def __init__(self, root: str, infinite: bool = False) -> None:
super().__init__()
VALID_CAPTION_FILES = ["caption.txt", "captions.txt", "prompt.txt", "prompts.txt"]
VALID_IMAGE_FILES = ["image.txt", "images.txt"]
self.root = pathlib.Path(root)
self.infinite = infinite
data = []
existing_caption_files = [file for file in VALID_CAPTION_FILES if (self.root / file).exists()]
existing_image_files = [file for file in VALID_IMAGE_FILES if (self.root / file).exists()]
if len(existing_caption_files) == 0:
raise FileNotFoundError(
f"No caption file found in {self.root}. Must have exactly one of {VALID_CAPTION_FILES}"
)
if len(existing_image_files) == 0:
raise FileNotFoundError(
f"No image file found in {self.root}. Must have exactly one of {VALID_IMAGE_FILES}"
)
if len(existing_caption_files) > 1:
raise ValueError(
f"Multiple caption files found in {self.root}. Must have exactly one of {VALID_CAPTION_FILES}"
)
if len(existing_image_files) > 1:
raise ValueError(
f"Multiple image files found in {self.root}. Must have exactly one of {VALID_IMAGE_FILES}"
)
caption_file = existing_caption_files[0]
image_file = existing_image_files[0]
with open((self.root / caption_file).as_posix(), "r") as f:
captions = f.read().splitlines()
with open((self.root / image_file).as_posix(), "r") as f:
images = f.read().splitlines()
images = [(self.root / image).as_posix() for image in images]
if len(captions) != len(images):
raise ValueError(f"Number of captions ({len(captions)}) must match number of images ({len(images)})")
for caption, image in zip(captions, images):
data.append({"caption": caption, "image": image})
data = datasets.Dataset.from_list(data)
data = data.cast_column("image", datasets.Image(mode="RGB"))
self._data = data.to_iterable_dataset()
self._sample_index = 0
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
def _get_data_iter(self):
if self._sample_index == 0:
return iter(self._data)
return iter(self._data.skip(self._sample_index))
def __iter__(self):
while True:
for sample in self._get_data_iter():
self._sample_index += 1
sample["image"] = _preprocess_image(sample["image"])
yield sample
if not self.infinite:
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
break
else:
self._sample_index = 0
def load_state_dict(self, state_dict):
self._sample_index = state_dict["sample_index"]
def state_dict(self):
return {"sample_index": self._sample_index}
class VideoFileCaptionFileListDataset(
torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful
):
def __init__(self, root: str, infinite: bool = False) -> None:
super().__init__()
VALID_CAPTION_FILES = ["caption.txt", "captions.txt", "prompt.txt", "prompts.txt"]
VALID_VIDEO_FILES = ["video.txt", "videos.txt"]
self.root = pathlib.Path(root)
self.infinite = infinite
data = []
existing_caption_files = [file for file in VALID_CAPTION_FILES if (self.root / file).exists()]
existing_video_files = [file for file in VALID_VIDEO_FILES if (self.root / file).exists()]
if len(existing_caption_files) == 0:
raise FileNotFoundError(
f"No caption file found in {self.root}. Must have exactly one of {VALID_CAPTION_FILES}"
)
if len(existing_video_files) == 0:
raise FileNotFoundError(
f"No video file found in {self.root}. Must have exactly one of {VALID_VIDEO_FILES}"
)
if len(existing_caption_files) > 1:
raise ValueError(
f"Multiple caption files found in {self.root}. Must have exactly one of {VALID_CAPTION_FILES}"
)
if len(existing_video_files) > 1:
raise ValueError(
f"Multiple video files found in {self.root}. Must have exactly one of {VALID_VIDEO_FILES}"
)
caption_file = existing_caption_files[0]
video_file = existing_video_files[0]
with open((self.root / caption_file).as_posix(), "r") as f:
captions = f.read().splitlines()
with open((self.root / video_file).as_posix(), "r") as f:
videos = f.read().splitlines()
videos = [(self.root / video).as_posix() for video in videos]
if len(captions) != len(videos):
raise ValueError(f"Number of captions ({len(captions)}) must match number of videos ({len(videos)})")
for caption, video in zip(captions, videos):
data.append({"caption": caption, "video": video})
data = datasets.Dataset.from_list(data)
data = data.cast_column("video", datasets.Video())
self._data = data.to_iterable_dataset()
self._sample_index = 0
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
def _get_data_iter(self):
if self._sample_index == 0:
return iter(self._data)
return iter(self._data.skip(self._sample_index))
def __iter__(self):
while True:
for sample in self._get_data_iter():
self._sample_index += 1
sample["video"] = _preprocess_video(sample["video"])
yield sample
if not self.infinite:
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
break
else:
self._sample_index = 0
def load_state_dict(self, state_dict):
self._sample_index = state_dict["sample_index"]
def state_dict(self):
return {"sample_index": self._sample_index}
class ImageFolderDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
def __init__(self, root: str, infinite: bool = False) -> None:
super().__init__()
self.root = pathlib.Path(root)
self.infinite = infinite
data = datasets.load_dataset("imagefolder", data_dir=self.root.as_posix(), split="train")
self._data = data.to_iterable_dataset()
self._sample_index = 0
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
def _get_data_iter(self):
if self._sample_index == 0:
return iter(self._data)
return iter(self._data.skip(self._sample_index))
def __iter__(self):
while True:
for sample in self._get_data_iter():
self._sample_index += 1
sample["image"] = _preprocess_image(sample["image"])
yield sample
if not self.infinite:
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
break
else:
self._sample_index = 0
def load_state_dict(self, state_dict):
self._sample_index = state_dict["sample_index"]
def state_dict(self):
return {"sample_index": self._sample_index}
class VideoFolderDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
def __init__(self, root: str, infinite: bool = False) -> None:
super().__init__()
self.root = pathlib.Path(root)
self.infinite = infinite
data = datasets.load_dataset("videofolder", data_dir=self.root.as_posix(), split="train")
self._data = data.to_iterable_dataset()
self._sample_index = 0
self._precomputable_once = len(data) <= MAX_PRECOMPUTABLE_ITEMS_LIMIT
def _get_data_iter(self):
if self._sample_index == 0:
return iter(self._data)
return iter(self._data.skip(self._sample_index))
def __iter__(self):
while True:
for sample in self._get_data_iter():
self._sample_index += 1
sample["video"] = _preprocess_video(sample["video"])
yield sample
if not self.infinite:
logger.warning(f"Dataset ({self.__class__.__name__}={self.root}) has run out of data")
break
else:
self._sample_index = 0
def load_state_dict(self, state_dict):
self._sample_index = state_dict["sample_index"]
def state_dict(self):
return {"sample_index": self._sample_index}
class ImageWebDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
def __init__(
self,
dataset_name: str,
infinite: bool = False,
column_names: Union[str, List[str]] = "__auto__",
weights: Dict[str, float] = -1,
**kwargs,
) -> None:
super().__init__()
assert weights == -1 or isinstance(
weights, dict
), "`weights` must be a dictionary of probabilities for each caption column"
self.dataset_name = dataset_name
self.infinite = infinite
data = datasets.load_dataset(dataset_name, split="train", streaming=True)
if column_names == "__auto__":
if weights == -1:
caption_columns = [column for column in data.column_names if column in COMMON_WDS_CAPTION_COLUMN_NAMES]
if len(caption_columns) == 0:
raise ValueError(
f"No common caption column found in the dataset. Supported columns are: {COMMON_WDS_CAPTION_COLUMN_NAMES}"
)
weights = [1] * len(caption_columns)
else:
caption_columns = list(weights.keys())
weights = list(weights.values())
if not all(column in data.column_names for column in caption_columns):
raise ValueError(
f"Caption columns {caption_columns} not found in the dataset. Available columns are: {data.column_names}"
)
else:
if isinstance(column_names, str):
if column_names not in data.column_names:
raise ValueError(
f"Caption column {column_names} not found in the dataset. Available columns are: {data.column_names}"
)
caption_columns = [column_names]
weights = [1] if weights == -1 else [weights.get(column_names)]
elif isinstance(column_names, list):
if not all(column in data.column_names for column in column_names):
raise ValueError(
f"Caption columns {column_names} not found in the dataset. Available columns are: {data.column_names}"
)
caption_columns = column_names
weights = [1] if weights == -1 else [weights.get(column) for column in column_names]
else:
raise ValueError(f"Unsupported type for column_name: {type(column_names)}")
for column_names in constants.SUPPORTED_IMAGE_FILE_EXTENSIONS:
if column_names in data.column_names:
data = data.cast_column(column_names, datasets.Image(mode="RGB"))
data = data.rename_column(column_names, "image")
break
self._data = data
self._sample_index = 0
self._precomputable_once = False
self._caption_columns = caption_columns
self._weights = weights
def _get_data_iter(self):
if self._sample_index == 0:
return iter(self._data)
return iter(self._data.skip(self._sample_index))
def __iter__(self):
while True:
for sample in self._get_data_iter():
self._sample_index += 1
caption_column = random.choices(self._caption_columns, weights=self._weights, k=1)[0]
sample["caption"] = sample[caption_column]
sample["image"] = _preprocess_image(sample["image"])
yield sample
if not self.infinite:
logger.warning(f"Dataset {self.dataset_name} has run out of data")
break
else:
# Reset offset for the next iteration
self._sample_index = 0
logger.warning(f"Dataset {self.dataset_name} is being re-looped")
def load_state_dict(self, state_dict):
self._sample_index = state_dict["sample_index"]
def state_dict(self):
return {"sample_index": self._sample_index}
class VideoWebDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
def __init__(
self,
dataset_name: str,
infinite: bool = False,
column_names: Union[str, List[str]] = "__auto__",
weights: Dict[str, float] = -1,
**kwargs,
) -> None:
super().__init__()
assert weights == -1 or isinstance(
weights, dict
), "`weights` must be a dictionary of probabilities for each caption column"
self.dataset_name = dataset_name
self.infinite = infinite
data = datasets.load_dataset(dataset_name, split="train", streaming=True)
if column_names == "__auto__":
if weights == -1:
caption_columns = [column for column in data.column_names if column in COMMON_WDS_CAPTION_COLUMN_NAMES]
if len(caption_columns) == 0:
raise ValueError(
f"No common caption column found in the dataset. Supported columns are: {COMMON_WDS_CAPTION_COLUMN_NAMES}"
)
weights = [1] * len(caption_columns)
else:
caption_columns = list(weights.keys())
weights = list(weights.values())
if not all(column in data.column_names for column in caption_columns):
raise ValueError(
f"Caption columns {caption_columns} not found in the dataset. Available columns are: {data.column_names}"
)
else:
if isinstance(column_names, str):
if column_names not in data.column_names:
raise ValueError(
f"Caption column {column_names} not found in the dataset. Available columns are: {data.column_names}"
)
caption_columns = [column_names]
weights = [1] if weights == -1 else [weights.get(column_names)]
elif isinstance(column_names, list):
if not all(column in data.column_names for column in column_names):
raise ValueError(
f"Caption columns {column_names} not found in the dataset. Available columns are: {data.column_names}"
)
caption_columns = column_names
weights = [1] if weights == -1 else [weights.get(column) for column in column_names]
else:
raise ValueError(f"Unsupported type for column_name: {type(column_names)}")
for column_names in constants.SUPPORTED_VIDEO_FILE_EXTENSIONS:
if column_names in data.column_names:
data = data.cast_column(column_names, datasets.Video())
data = data.rename_column(column_names, "video")
break
self._data = data
self._sample_index = 0
self._precomputable_once = False
self._caption_columns = caption_columns
self._weights = weights
def _get_data_iter(self):
if self._sample_index == 0:
return iter(self._data)
return iter(self._data.skip(self._sample_index))
def __iter__(self):
while True:
for sample in self._get_data_iter():
self._sample_index += 1
caption_column = random.choices(self._caption_columns, weights=self._weights, k=1)[0]
sample["caption"] = sample[caption_column]
sample["video"] = _preprocess_video(sample["video"])
yield sample
if not self.infinite:
logger.warning(f"Dataset {self.dataset_name} has run out of data")
break
else:
# Reset offset for the next iteration
self._sample_index = 0
logger.warning(f"Dataset {self.dataset_name} is being re-looped")
def load_state_dict(self, state_dict):
self._sample_index = state_dict["sample_index"]
def state_dict(self):
return {"sample_index": self._sample_index}
class ValidationDataset(torch.utils.data.IterableDataset):
def __init__(self, filename: str):
super().__init__()
self.filename = pathlib.Path(filename)
if not self.filename.exists():
raise FileNotFoundError(f"File {self.filename.as_posix()} does not exist")
if self.filename.suffix == ".csv":
data = datasets.load_dataset("csv", data_files=self.filename.as_posix(), split="train")
elif self.filename.suffix == ".json":
data = datasets.load_dataset("json", data_files=self.filename.as_posix(), split="train", field="data")
elif self.filename.suffix == ".parquet":
data = datasets.load_dataset("parquet", data_files=self.filename.as_posix(), split="train")
elif self.filename.suffix == ".arrow":
data = datasets.load_dataset("arrow", data_files=self.filename.as_posix(), split="train")
else:
_SUPPORTED_FILE_FORMATS = [".csv", ".json", ".parquet", ".arrow"]
raise ValueError(
f"Unsupported file format {self.filename.suffix} for validation dataset. Supported formats are: {_SUPPORTED_FILE_FORMATS}"
)
self._data = data.to_iterable_dataset()
def __iter__(self):
for sample in self._data:
# For consistency reasons, we mandate that "caption" is always present in the validation dataset.
# However, since the model specifications use "prompt", we create an alias here.
sample["prompt"] = sample["caption"]
# Load image or video if the path is provided
# TODO(aryan): need to handle custom columns here for control conditions
sample["image"] = None
sample["video"] = None
if sample.get("image_path", None) is not None:
image_path = pathlib.Path(sample["image_path"])
if not image_path.is_file():
logger.warning(f"Image file {image_path.as_posix()} does not exist.")
else:
sample["image"] = load_image(sample["image_path"])
if sample.get("video_path", None) is not None:
video_path = pathlib.Path(sample["video_path"])
if not video_path.is_file():
logger.warning(f"Video file {video_path.as_posix()} does not exist.")
else:
sample["video"] = load_video(sample["video_path"])
sample = {k: v for k, v in sample.items() if v is not None}
yield sample
class IterableDatasetPreprocessingWrapper(
torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful
):
def __init__(
self,
dataset: torch.utils.data.IterableDataset,
dataset_type: str,
id_token: Optional[str] = None,
image_resolution_buckets: List[Tuple[int, int]] = None,
video_resolution_buckets: List[Tuple[int, int, int]] = None,
reshape_mode: str = "bicubic",
remove_common_llm_caption_prefixes: bool = False,
**kwargs,
):
super().__init__()
self.dataset = dataset
self.dataset_type = dataset_type
self.id_token = id_token
self.image_resolution_buckets = image_resolution_buckets
self.video_resolution_buckets = video_resolution_buckets
self.reshape_mode = reshape_mode
self.remove_common_llm_caption_prefixes = remove_common_llm_caption_prefixes
logger.info(
f"Initializing IterableDatasetPreprocessingWrapper for the dataset with the following configuration:\n"
f" - Dataset Type: {dataset_type}\n"
f" - ID Token: {id_token}\n"
f" - Image Resolution Buckets: {image_resolution_buckets}\n"
f" - Video Resolution Buckets: {video_resolution_buckets}\n"
f" - Reshape Mode: {reshape_mode}\n"
f" - Remove Common LLM Caption Prefixes: {remove_common_llm_caption_prefixes}\n"
)
def __iter__(self):
logger.info("Starting IterableDatasetPreprocessingWrapper for the dataset")
for sample in iter(self.dataset):
if self.dataset_type == "image":
if self.image_resolution_buckets:
sample["_original_num_frames"] = 1
sample["_original_height"] = sample["image"].size(1)
sample["_original_width"] = sample["image"].size(2)
sample["image"] = FF.resize_to_nearest_bucket_image(
sample["image"], self.image_resolution_buckets, self.reshape_mode
)
elif self.dataset_type == "video":
if self.video_resolution_buckets:
sample["_original_num_frames"] = sample["video"].size(0)
sample["_original_height"] = sample["video"].size(2)
sample["_original_width"] = sample["video"].size(3)
sample["video"], _first_frame_only = FF.resize_to_nearest_bucket_video(
sample["video"], self.video_resolution_buckets, self.reshape_mode
)
if _first_frame_only:
msg = (
"The number of frames in the video is less than the minimum bucket size "
"specified. The first frame is being used as a single frame video. This "
"message is logged at the first occurence and for every 128th occurence "
"after that."
)
logger.log_freq("WARNING", "BUCKET_TEMPORAL_SIZE_UNAVAILABLE", msg, frequency=128)
sample["video"] = sample["video"][0]
if self.remove_common_llm_caption_prefixes:
sample["caption"] = FF.remove_prefix(sample["caption"], constants.COMMON_LLM_START_PHRASES)
if self.id_token is not None:
sample["caption"] = f"{self.id_token} {sample['caption']}"
yield sample
def load_state_dict(self, state_dict):
self.dataset.load_state_dict(state_dict["dataset"])
def state_dict(self):
return {"dataset": self.dataset.state_dict()}
class IterableCombinedDataset(torch.utils.data.IterableDataset, torch.distributed.checkpoint.stateful.Stateful):
def __init__(self, datasets: List[torch.utils.data.IterableDataset], buffer_size: int, shuffle: bool = False):
super().__init__()
self.datasets = datasets
self.buffer_size = buffer_size
self.shuffle = shuffle
logger.info(
f"Initializing IterableCombinedDataset with the following configuration:\n"
f" - Number of Datasets: {len(datasets)}\n"
f" - Buffer Size: {buffer_size}\n"
f" - Shuffle: {shuffle}\n"
)
def __iter__(self):
logger.info(f"Starting IterableCombinedDataset with {len(self.datasets)} datasets")
iterators = [iter(dataset) for dataset in self.datasets]
buffer = []
per_iter = max(1, self.buffer_size // len(iterators))
for index, it in enumerate(iterators):
for _ in tqdm(range(per_iter), desc=f"Filling buffer from data iterator {index}"):
try:
buffer.append((it, next(it)))
except StopIteration:
continue
while len(buffer) > 0:
idx = 0
if self.shuffle:
idx = random.randint(0, len(buffer) - 1)
current_it, sample = buffer.pop(idx)
yield sample
try:
buffer.append((current_it, next(current_it)))
except StopIteration:
pass
def load_state_dict(self, state_dict):
for dataset, dataset_state_dict in zip(self.datasets, state_dict["datasets"]):
dataset.load_state_dict(dataset_state_dict)
def state_dict(self):
return {"datasets": [dataset.state_dict() for dataset in self.datasets]}
# TODO(aryan): maybe write a test for this
def initialize_dataset(
dataset_name_or_root: str,
dataset_type: str = "video",
streaming: bool = True,
infinite: bool = False,
*,
_caption_options: Optional[Dict[str, Any]] = None,
) -> torch.utils.data.IterableDataset:
assert dataset_type in ["image", "video"]
try:
does_repo_exist_on_hub = repo_exists(dataset_name_or_root, repo_type="dataset")
except huggingface_hub.errors.HFValidationError:
does_repo_exist_on_hub = False
if does_repo_exist_on_hub:
return _initialize_hub_dataset(dataset_name_or_root, dataset_type, infinite, _caption_options=_caption_options)
else:
return _initialize_local_dataset(dataset_name_or_root, dataset_type, infinite)
def combine_datasets(
datasets: List[torch.utils.data.IterableDataset], buffer_size: int, shuffle: bool = False
) -> torch.utils.data.IterableDataset:
return IterableCombinedDataset(datasets=datasets, buffer_size=buffer_size, shuffle=shuffle)
def wrap_iterable_dataset_for_preprocessing(
dataset: torch.utils.data.IterableDataset, dataset_type: str, config: Dict[str, Any]
) -> torch.utils.data.IterableDataset:
return IterableDatasetPreprocessingWrapper(dataset, dataset_type, **config)
def _initialize_local_dataset(dataset_name_or_root: str, dataset_type: str, infinite: bool = False):
root = pathlib.Path(dataset_name_or_root)
supported_metadata_files = ["metadata.json", "metadata.jsonl", "metadata.csv"]
metadata_files = [root / metadata_file for metadata_file in supported_metadata_files]
metadata_files = [metadata_file for metadata_file in metadata_files if metadata_file.exists()]
if len(metadata_files) > 1:
raise ValueError("Found multiple metadata files. Please ensure there is only one metadata file.")
if len(metadata_files) == 1:
if dataset_type == "image":
dataset = ImageFolderDataset(root.as_posix(), infinite=infinite)
else:
dataset = VideoFolderDataset(root.as_posix(), infinite=infinite)
return dataset
if _has_data_caption_file_pairs(root, remote=False):
if dataset_type == "image":
dataset = ImageCaptionFilePairDataset(root.as_posix(), infinite=infinite)
else:
dataset = VideoCaptionFilePairDataset(root.as_posix(), infinite=infinite)
elif _has_data_file_caption_file_lists(root, remote=False):
if dataset_type == "image":
dataset = ImageFileCaptionFileListDataset(root.as_posix(), infinite=infinite)
else:
dataset = VideoFileCaptionFileListDataset(root.as_posix(), infinite=infinite)
else:
raise ValueError(
f"Could not find any supported dataset structure in the directory {root}. Please open an issue at "
f"https://github.com/a-r-r-o-w/finetrainers with information about your dataset structure and we will "
f"help you set it up."
)
return dataset
def _initialize_hub_dataset(
dataset_name: str, dataset_type: str, infinite: bool = False, *, _caption_options: Optional[Dict[str, Any]] = None
):
repo_file_list = list_repo_files(dataset_name, repo_type="dataset")
if _has_data_caption_file_pairs(repo_file_list, remote=True):
return _initialize_data_caption_file_dataset_from_hub(dataset_name, dataset_type, infinite)
elif _has_data_file_caption_file_lists(repo_file_list, remote=True):
return _initialize_data_file_caption_file_dataset_from_hub(dataset_name, dataset_type, infinite)
has_tar_files = any(file.endswith(".tar") or file.endswith(".parquet") for file in repo_file_list)
if has_tar_files:
return _initialize_webdataset(dataset_name, dataset_type, infinite, _caption_options=_caption_options)
# TODO(aryan): This should be improved
caption_files = [pathlib.Path(file).name for file in repo_file_list if file.endswith(".txt")]
if len(caption_files) < MAX_PRECOMPUTABLE_ITEMS_LIMIT:
try:
dataset_root = snapshot_download(dataset_name, repo_type="dataset")
if dataset_type == "image":
dataset = ImageFolderDataset(dataset_root, infinite=infinite)
else:
dataset = VideoFolderDataset(dataset_root, infinite=infinite)
return dataset
except Exception:
pass
raise ValueError(f"Could not load dataset {dataset_name} from the HF Hub")
def _initialize_data_caption_file_dataset_from_hub(
dataset_name: str, dataset_type: str, infinite: bool = False
) -> torch.utils.data.IterableDataset:
logger.info(f"Downloading dataset {dataset_name} from the HF Hub")
dataset_root = snapshot_download(dataset_name, repo_type="dataset")
if dataset_type == "image":
return ImageCaptionFilePairDataset(dataset_root, infinite=infinite)
else:
return VideoCaptionFilePairDataset(dataset_root, infinite=infinite)
def _initialize_data_file_caption_file_dataset_from_hub(
dataset_name: str, dataset_type: str, infinite: bool = False
) -> torch.utils.data.IterableDataset:
logger.info(f"Downloading dataset {dataset_name} from the HF Hub")
dataset_root = snapshot_download(dataset_name, repo_type="dataset")
if dataset_type == "image":
return ImageFileCaptionFileListDataset(dataset_root, infinite=infinite)
else:
return VideoFileCaptionFileListDataset(dataset_root, infinite=infinite)
def _initialize_webdataset(
dataset_name: str, dataset_type: str, infinite: bool = False, _caption_options: Optional[Dict[str, Any]] = None
) -> torch.utils.data.IterableDataset:
logger.info(f"Streaming webdataset {dataset_name} from the HF Hub")
_caption_options = _caption_options or {}
if dataset_type == "image":
return ImageWebDataset(dataset_name, infinite=infinite, **_caption_options)
else:
return VideoWebDataset(dataset_name, infinite=infinite, **_caption_options)
def _has_data_caption_file_pairs(root: Union[pathlib.Path, List[str]], remote: bool = False) -> bool:
# TODO(aryan): this logic can be improved
if not remote:
caption_files = utils.find_files(root.as_posix(), "*.txt", depth=0)
for caption_file in caption_files:
caption_file = pathlib.Path(caption_file)
for extension in [*constants.SUPPORTED_IMAGE_FILE_EXTENSIONS, *constants.SUPPORTED_VIDEO_FILE_EXTENSIONS]:
data_filename = caption_file.with_suffix(f".{extension}")
if data_filename.exists():
return True
return False
else:
caption_files = [file for file in root if file.endswith(".txt")]
for caption_file in caption_files:
caption_file = pathlib.Path(caption_file)
for extension in [*constants.SUPPORTED_IMAGE_FILE_EXTENSIONS, *constants.SUPPORTED_VIDEO_FILE_EXTENSIONS]:
data_filename = caption_file.with_suffix(f".{extension}").name
if data_filename in root:
return True
return False
def _has_data_file_caption_file_lists(root: Union[pathlib.Path, List[str]], remote: bool = False) -> bool:
# TODO(aryan): this logic can be improved
if not remote:
file_list = {x.name for x in root.iterdir()}
has_caption_files = any(file in file_list for file in COMMON_CAPTION_FILES)
has_video_files = any(file in file_list for file in COMMON_VIDEO_FILES)
has_image_files = any(file in file_list for file in COMMON_IMAGE_FILES)
return has_caption_files and (has_video_files or has_image_files)
else:
has_caption_files = any(file in root for file in COMMON_CAPTION_FILES)
has_video_files = any(file in root for file in COMMON_VIDEO_FILES)
has_image_files = any(file in root for file in COMMON_IMAGE_FILES)
return has_caption_files and (has_video_files or has_image_files)
def _read_caption_from_file(filename: str) -> str:
with open(filename, "r") as f:
return f.read().strip()
def _preprocess_image(image: PIL.Image.Image) -> torch.Tensor:
image = image.convert("RGB")
image = np.array(image).astype(np.float32)
image = torch.from_numpy(image)
image = image.permute(2, 0, 1).contiguous() / 127.5 - 1.0
return image
def _preprocess_video(video: decord.VideoReader) -> torch.Tensor:
video = video.get_batch(list(range(len(video))))
video = video.permute(0, 3, 1, 2).contiguous()
video = video.float() / 127.5 - 1.0
return video
|