File size: 14,894 Bytes
ecd5028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import os
from typing import Any, Dict, List, Optional, Tuple

import torch
from accelerate import init_empty_weights
from diffusers import (
    AutoencoderKL,
    CogView4Pipeline,
    CogView4Transformer2DModel,
    FlowMatchEulerDiscreteScheduler,
)
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
from transformers import AutoTokenizer, GlmModel

from ... import data
from ... import functional as FF
from ...logging import get_logger
from ...processors import CogView4GLMProcessor, ProcessorMixin
from ...typing import ArtifactType, SchedulerType
from ...utils import get_non_null_items
from ..modeling_utils import ModelSpecification


logger = get_logger()


class CogView4LatentEncodeProcessor(ProcessorMixin):
    r"""
    Processor to encode image/video into latents using the LTX VAE.

    Args:
        output_names (`List[str]`):
            The names of the outputs that the processor returns. The outputs are in the following order:
            - latents: The latents of the input image/video.
            - original_size: The original size of the input image/video.
            - target_size: The target size of the input image/video.
            - crop_coords: The top-left crop coordinates of the input image/video.
    """

    def __init__(self, output_names: List[str]):
        super().__init__()

        self.output_names = output_names
        assert len(self.output_names) == 4

    def forward(
        self,
        vae: AutoencoderKL,
        image: Optional[torch.Tensor] = None,
        video: Optional[torch.Tensor] = None,
        generator: Optional[torch.Generator] = None,
        compute_posterior: bool = True,
        _original_height: Optional[int] = None,
        _original_width: Optional[int] = None,
    ) -> Dict[str, torch.Tensor]:
        device = vae.device
        dtype = vae.dtype

        if video is not None:
            # TODO(aryan): perhaps better would be to flatten(0, 1), but need to account for reshaping sigmas accordingly
            image = video[:, 0]  # [B, F, C, H, W] -> [B, 1, C, H, W]

        assert image.ndim == 4, f"Expected 4D tensor, got {image.ndim}D tensor"
        image = image.to(device=device, dtype=vae.dtype)

        if compute_posterior:
            latents = vae.encode(image).latent_dist.sample(generator=generator)
            latents = latents.to(dtype=dtype)
        else:
            if vae.use_slicing and image.shape[0] > 1:
                encoded_slices = [vae._encode(x_slice) for x_slice in image.split(1)]
                moments = torch.cat(encoded_slices)
            else:
                moments = vae._encode(image)
            latents = moments.to(dtype=dtype)

        batch_size = latents.size(0)
        target_height = image.size(2)
        target_width = image.size(3)
        original_size = torch.tensor([(_original_height, _original_width)], device=device, dtype=dtype).repeat(
            batch_size, 1
        )
        target_size = torch.tensor([(target_height, target_width)], device=device, dtype=dtype).repeat(batch_size, 1)
        crop_coords = torch.tensor([(0, 0)], device=device, dtype=dtype).repeat(batch_size, 1)

        return {
            self.output_names[0]: latents,
            self.output_names[1]: original_size,
            self.output_names[2]: target_size,
            self.output_names[3]: crop_coords,
        }


class CogView4ModelSpecification(ModelSpecification):
    def __init__(
        self,
        pretrained_model_name_or_path: str = "THUDM/CogView4-6B",
        tokenizer_id: Optional[str] = None,
        text_encoder_id: Optional[str] = None,
        transformer_id: Optional[str] = None,
        vae_id: Optional[str] = None,
        text_encoder_dtype: torch.dtype = torch.bfloat16,
        transformer_dtype: torch.dtype = torch.bfloat16,
        vae_dtype: torch.dtype = torch.bfloat16,
        revision: Optional[str] = None,
        cache_dir: Optional[str] = None,
        condition_model_processors: List[ProcessorMixin] = None,
        latent_model_processors: List[ProcessorMixin] = None,
        **kwargs,
    ) -> None:
        super().__init__(
            pretrained_model_name_or_path=pretrained_model_name_or_path,
            tokenizer_id=tokenizer_id,
            text_encoder_id=text_encoder_id,
            transformer_id=transformer_id,
            vae_id=vae_id,
            text_encoder_dtype=text_encoder_dtype,
            transformer_dtype=transformer_dtype,
            vae_dtype=vae_dtype,
            revision=revision,
            cache_dir=cache_dir,
        )

        if condition_model_processors is None:
            condition_model_processors = [CogView4GLMProcessor(["encoder_hidden_states"])]
        if latent_model_processors is None:
            latent_model_processors = [
                CogView4LatentEncodeProcessor(["latents", "original_size", "target_size", "crop_coords"])
            ]

        self.condition_model_processors = condition_model_processors
        self.latent_model_processors = latent_model_processors

    @property
    def _resolution_dim_keys(self):
        return {"latents": (2, 3)}

    def load_condition_models(self) -> Dict[str, torch.nn.Module]:
        if self.tokenizer_id is not None:
            tokenizer = AutoTokenizer.from_pretrained(
                self.tokenizer_id, revision=self.revision, cache_dir=self.cache_dir
            )
        else:
            tokenizer = AutoTokenizer.from_pretrained(
                self.pretrained_model_name_or_path,
                subfolder="tokenizer",
                revision=self.revision,
                cache_dir=self.cache_dir,
            )

        if self.text_encoder_id is not None:
            text_encoder = GlmModel.from_pretrained(
                self.text_encoder_id,
                torch_dtype=self.text_encoder_dtype,
                revision=self.revision,
                cache_dir=self.cache_dir,
            )
        else:
            text_encoder = GlmModel.from_pretrained(
                self.pretrained_model_name_or_path,
                subfolder="text_encoder",
                torch_dtype=self.text_encoder_dtype,
                revision=self.revision,
                cache_dir=self.cache_dir,
            )

        return {"tokenizer": tokenizer, "text_encoder": text_encoder}

    def load_latent_models(self) -> Dict[str, torch.nn.Module]:
        if self.vae_id is not None:
            vae = AutoencoderKL.from_pretrained(
                self.vae_id,
                torch_dtype=self.vae_dtype,
                revision=self.revision,
                cache_dir=self.cache_dir,
            )
        else:
            vae = AutoencoderKL.from_pretrained(
                self.pretrained_model_name_or_path,
                subfolder="vae",
                torch_dtype=self.vae_dtype,
                revision=self.revision,
                cache_dir=self.cache_dir,
            )

        return {"vae": vae}

    def load_diffusion_models(self) -> Dict[str, torch.nn.Module]:
        if self.transformer_id is not None:
            transformer = CogView4Transformer2DModel.from_pretrained(
                self.transformer_id,
                torch_dtype=self.transformer_dtype,
                revision=self.revision,
                cache_dir=self.cache_dir,
            )
        else:
            transformer = CogView4Transformer2DModel.from_pretrained(
                self.pretrained_model_name_or_path,
                subfolder="transformer",
                torch_dtype=self.transformer_dtype,
                revision=self.revision,
                cache_dir=self.cache_dir,
            )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {"transformer": transformer, "scheduler": scheduler}

    def load_pipeline(
        self,
        tokenizer: Optional[AutoTokenizer] = None,
        text_encoder: Optional[GlmModel] = None,
        transformer: Optional[CogView4Transformer2DModel] = None,
        vae: Optional[AutoencoderKL] = None,
        scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None,
        enable_slicing: bool = False,
        enable_tiling: bool = False,
        enable_model_cpu_offload: bool = False,
        training: bool = False,
        **kwargs,
    ) -> CogView4Pipeline:
        components = {
            "tokenizer": tokenizer,
            "text_encoder": text_encoder,
            "transformer": transformer,
            "vae": vae,
            # Load the scheduler based on CogView4's config instead of using the default initialization being used for training
            # "scheduler": scheduler,
        }
        components = get_non_null_items(components)

        pipe = CogView4Pipeline.from_pretrained(
            self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir
        )
        pipe.text_encoder.to(self.text_encoder_dtype)
        pipe.vae.to(self.vae_dtype)

        if not training:
            pipe.transformer.to(self.transformer_dtype)

        if enable_slicing:
            pipe.vae.enable_slicing()
        if enable_tiling:
            pipe.vae.enable_tiling()
        if enable_model_cpu_offload:
            pipe.enable_model_cpu_offload()

        return pipe

    @torch.no_grad()
    def prepare_conditions(
        self,
        tokenizer: AutoTokenizer,
        text_encoder: GlmModel,
        caption: str,
        max_sequence_length: int = 1024,
        **kwargs,
    ) -> Dict[str, Any]:
        conditions = {
            "tokenizer": tokenizer,
            "text_encoder": text_encoder,
            "caption": caption,
            "max_sequence_length": max_sequence_length,
            **kwargs,
        }
        input_keys = set(conditions.keys())
        conditions = super().prepare_conditions(**conditions)
        conditions = {k: v for k, v in conditions.items() if k not in input_keys}
        return conditions

    @torch.no_grad()
    def prepare_latents(
        self,
        vae: AutoencoderKL,
        image: Optional[torch.Tensor] = None,
        video: Optional[torch.Tensor] = None,
        generator: Optional[torch.Generator] = None,
        compute_posterior: bool = True,
        _original_height: Optional[int] = None,
        _original_width: Optional[int] = None,
        **kwargs,
    ) -> Dict[str, torch.Tensor]:
        conditions = {
            "vae": vae,
            "image": image,
            "video": video,
            "generator": generator,
            "compute_posterior": compute_posterior,
            "_original_height": _original_height,
            "_original_width": _original_width,
            **kwargs,
        }
        input_keys = set(conditions.keys())
        conditions = super().prepare_latents(**conditions)
        conditions = {k: v for k, v in conditions.items() if k not in input_keys}
        return conditions

    def forward(
        self,
        transformer: CogView4Transformer2DModel,
        condition_model_conditions: Dict[str, torch.Tensor],
        latent_model_conditions: Dict[str, torch.Tensor],
        sigmas: torch.Tensor,
        generator: Optional[torch.Generator] = None,
        compute_posterior: bool = True,
        **kwargs,
    ) -> Tuple[torch.Tensor, ...]:
        if compute_posterior:
            latents = latent_model_conditions.pop("latents")
        else:
            posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("latents"))
            latents = posterior.sample(generator=generator)
            del posterior

        latents = (latents - self.vae_config.shift_factor) * self.vae_config.scaling_factor
        noise = torch.zeros_like(latents).normal_(generator=generator)
        timesteps = (sigmas.flatten() * 1000.0).long()

        base_image_sequence_length = 256
        base_shift = 0.25
        max_shift = 0.75

        image_sequence_length = latents.size(2) * latents.size(3) // self.transformer_config.patch_size**2
        mu = (image_sequence_length / base_image_sequence_length) ** 0.5
        mu = mu * max_shift + base_shift
        shifted_sigmas = mu / (mu + (1 / sigmas - 1) ** 1.0)
        noisy_latents = FF.flow_match_xt(latents, noise, shifted_sigmas)

        latent_model_conditions["hidden_states"] = noisy_latents.to(latents)

        pred = transformer(
            **latent_model_conditions,
            **condition_model_conditions,
            timestep=timesteps,
            return_dict=False,
        )[0]
        target = FF.flow_match_target(noise, latents)

        # NOTE: shifted_sigmas loss weighting seems to work better than sigmas. Needs more investigation
        # but let's keep it this way for now. Longer training runs should reveal more insights.
        # return pred, target, sigmas
        return pred, target, shifted_sigmas

    def validation(
        self,
        pipeline: CogView4Pipeline,
        prompt: str,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        generator: Optional[torch.Generator] = None,
        **kwargs,
    ) -> List[ArtifactType]:
        generation_kwargs = {
            "prompt": prompt,
            "height": height,
            "width": width,
            "num_inference_steps": num_inference_steps,
            "generator": generator,
            "return_dict": True,
            "output_type": "pil",
        }
        generation_kwargs = get_non_null_items(generation_kwargs)
        image = pipeline(**generation_kwargs).images[0]
        return [data.ImageArtifact(value=image)]

    def _save_lora_weights(
        self,
        directory: str,
        transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
        scheduler: Optional[SchedulerType] = None,
        *args,
        **kwargs,
    ) -> None:
        # TODO(aryan): this needs refactoring
        if transformer_state_dict is not None:
            CogView4Pipeline.save_lora_weights(directory, transformer_state_dict, safe_serialization=True)
        if scheduler is not None:
            scheduler.save_pretrained(os.path.join(directory, "scheduler"))

    def _save_model(
        self,
        directory: str,
        transformer: CogView4Transformer2DModel,
        transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
        scheduler: Optional[SchedulerType] = None,
    ) -> None:
        # TODO(aryan): this needs refactoring
        if transformer_state_dict is not None:
            with init_empty_weights():
                transformer_copy = CogView4Transformer2DModel.from_config(transformer.config)
            transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True)
            transformer_copy.save_pretrained(os.path.join(directory, "transformer"))
        if scheduler is not None:
            scheduler.save_pretrained(os.path.join(directory, "scheduler"))