File size: 20,830 Bytes
80ebcb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecd5028
80ebcb3
 
 
 
 
 
 
 
 
 
ecd5028
80ebcb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57737a0
80ebcb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57737a0
 
 
80ebcb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
import os
import random
from typing import Any, Dict, List, Optional, Tuple

import torch
from accelerate import init_empty_weights
from diffusers import (
    AutoencoderKLLTXVideo,
    FlowMatchEulerDiscreteScheduler,
    LTXImageToVideoPipeline,
    LTXPipeline,
    LTXVideoTransformer3DModel,
)
from diffusers.models.autoencoders.vae import DiagonalGaussianDistribution
from PIL.Image import Image
from transformers import AutoModel, AutoTokenizer, T5EncoderModel, T5Tokenizer

from ... import data
from ... import functional as FF
from ...logging import get_logger
from ...parallel import ParallelBackendEnum
from ...processors import ProcessorMixin, T5Processor
from ...typing import ArtifactType, SchedulerType
from ...utils import get_non_null_items
from ..modeling_utils import ModelSpecification


logger = get_logger()


class LTXLatentEncodeProcessor(ProcessorMixin):
    r"""
    Processor to encode image/video into latents using the LTX VAE.

    Args:
        output_names (`List[str]`):
            The names of the outputs that the processor returns. The outputs are in the following order:
            - latents: The latents of the input image/video.
            - num_frames: The number of frames in the input video.
            - height: The height of the input image/video.
            - width: The width of the input image/video.
            - latents_mean: The latent channel means from the VAE state dict.
            - latents_std: The latent channel standard deviations from the VAE state dict.
    """

    def __init__(self, output_names: List[str]):
        super().__init__()
        self.output_names = output_names
        assert len(self.output_names) == 6

    def forward(
        self,
        vae: AutoencoderKLLTXVideo,
        image: Optional[torch.Tensor] = None,
        video: Optional[torch.Tensor] = None,
        generator: Optional[torch.Generator] = None,
        compute_posterior: bool = True,
    ) -> Dict[str, torch.Tensor]:
        device = vae.device
        dtype = vae.dtype

        if image is not None:
            video = image.unsqueeze(1)

        assert video.ndim == 5, f"Expected 5D tensor, got {video.ndim}D tensor"
        video = video.to(device=device, dtype=vae.dtype)
        video = video.permute(0, 2, 1, 3, 4).contiguous()  # [B, F, C, H, W] -> [B, C, F, H, W]

        if compute_posterior:
            latents = vae.encode(video).latent_dist.sample(generator=generator)
            latents = latents.to(dtype=dtype)
        else:
            if vae.use_slicing and video.shape[0] > 1:
                encoded_slices = [vae._encode(x_slice) for x_slice in video.split(1)]
                moments = torch.cat(encoded_slices)
            else:
                moments = vae._encode(video)
            latents = moments.to(dtype=dtype)

        _, _, num_frames, height, width = latents.shape

        return {
            self.output_names[0]: latents,
            self.output_names[1]: num_frames,
            self.output_names[2]: height,
            self.output_names[3]: width,
            self.output_names[4]: vae.latents_mean,
            self.output_names[5]: vae.latents_std,
        }


class LTXVideoModelSpecification(ModelSpecification):
    def __init__(
        self,
        pretrained_model_name_or_path: str = "Lightricks/LTX-Video",
        tokenizer_id: Optional[str] = None,
        text_encoder_id: Optional[str] = None,
        transformer_id: Optional[str] = None,
        vae_id: Optional[str] = None,
        text_encoder_dtype: torch.dtype = torch.bfloat16,
        transformer_dtype: torch.dtype = torch.bfloat16,
        vae_dtype: torch.dtype = torch.bfloat16,
        revision: Optional[str] = None,
        cache_dir: Optional[str] = None,
        condition_model_processors: List[ProcessorMixin] = None,
        latent_model_processors: List[ProcessorMixin] = None,
        **kwargs,
    ) -> None:
        super().__init__(
            pretrained_model_name_or_path=pretrained_model_name_or_path,
            tokenizer_id=tokenizer_id,
            text_encoder_id=text_encoder_id,
            transformer_id=transformer_id,
            vae_id=vae_id,
            text_encoder_dtype=text_encoder_dtype,
            transformer_dtype=transformer_dtype,
            vae_dtype=vae_dtype,
            revision=revision,
            cache_dir=cache_dir,
        )

        if condition_model_processors is None:
            condition_model_processors = [T5Processor(["encoder_hidden_states", "encoder_attention_mask"])]
        if latent_model_processors is None:
            latent_model_processors = [
                LTXLatentEncodeProcessor(["latents", "num_frames", "height", "width", "latents_mean", "latents_std"])
            ]

        self.condition_model_processors = condition_model_processors
        self.latent_model_processors = latent_model_processors

    @property
    def _resolution_dim_keys(self):
        return {"latents": (2, 3, 4)}

    def load_condition_models(self) -> Dict[str, torch.nn.Module]:
        if self.tokenizer_id is not None:
            tokenizer = AutoTokenizer.from_pretrained(
                self.tokenizer_id, revision=self.revision, cache_dir=self.cache_dir
            )
        else:
            tokenizer = T5Tokenizer.from_pretrained(
                self.pretrained_model_name_or_path,
                subfolder="tokenizer",
                revision=self.revision,
                cache_dir=self.cache_dir,
            )

        if self.text_encoder_id is not None:
            text_encoder = AutoModel.from_pretrained(
                self.text_encoder_id,
                torch_dtype=self.text_encoder_dtype,
                revision=self.revision,
                cache_dir=self.cache_dir,
            )
        else:
            text_encoder = T5EncoderModel.from_pretrained(
                self.pretrained_model_name_or_path,
                subfolder="text_encoder",
                torch_dtype=self.text_encoder_dtype,
                revision=self.revision,
                cache_dir=self.cache_dir,
            )

        return {"tokenizer": tokenizer, "text_encoder": text_encoder}

    def load_latent_models(self) -> Dict[str, torch.nn.Module]:
        if self.vae_id is not None:
            vae = AutoencoderKLLTXVideo.from_pretrained(
                self.vae_id,
                torch_dtype=self.vae_dtype,
                revision=self.revision,
                cache_dir=self.cache_dir,
            )
        else:
            vae = AutoencoderKLLTXVideo.from_pretrained(
                self.pretrained_model_name_or_path,
                subfolder="vae",
                torch_dtype=self.vae_dtype,
                revision=self.revision,
                cache_dir=self.cache_dir,
            )

        return {"vae": vae}

    def load_diffusion_models(self) -> Dict[str, torch.nn.Module]:
        if self.transformer_id is not None:
            transformer = LTXVideoTransformer3DModel.from_pretrained(
                self.transformer_id,
                torch_dtype=self.transformer_dtype,
                revision=self.revision,
                cache_dir=self.cache_dir,
            )
        else:
            transformer = LTXVideoTransformer3DModel.from_pretrained(
                self.pretrained_model_name_or_path,
                subfolder="transformer",
                torch_dtype=self.transformer_dtype,
                revision=self.revision,
                cache_dir=self.cache_dir,
            )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {"transformer": transformer, "scheduler": scheduler}

    def load_pipeline(
        self,
        tokenizer: Optional[T5Tokenizer] = None,
        text_encoder: Optional[T5EncoderModel] = None,
        transformer: Optional[LTXVideoTransformer3DModel] = None,
        vae: Optional[AutoencoderKLLTXVideo] = None,
        scheduler: Optional[FlowMatchEulerDiscreteScheduler] = None,
        enable_slicing: bool = False,
        enable_tiling: bool = False,
        enable_model_cpu_offload: bool = False,
        training: bool = False,
        **kwargs,
    ) -> LTXPipeline:
        components = {
            "tokenizer": tokenizer,
            "text_encoder": text_encoder,
            "transformer": transformer,
            "vae": vae,
            "scheduler": scheduler,
        }
        components = get_non_null_items(components)

        pipe = LTXPipeline.from_pretrained(
            self.pretrained_model_name_or_path, **components, revision=self.revision, cache_dir=self.cache_dir
        )
        pipe.text_encoder.to(self.text_encoder_dtype)
        pipe.vae.to(self.vae_dtype)

        if not training:
            pipe.transformer.to(self.transformer_dtype)

        if enable_slicing:
            pipe.vae.enable_slicing()
        if enable_tiling:
            pipe.vae.enable_tiling()
        if enable_model_cpu_offload:
            pipe.enable_model_cpu_offload()

        return pipe

    @torch.no_grad()
    def prepare_conditions(
        self,
        tokenizer: T5Tokenizer,
        text_encoder: T5EncoderModel,
        caption: str,
        max_sequence_length: int = 128,
        **kwargs,
    ) -> Dict[str, Any]:
        conditions = {
            "tokenizer": tokenizer,
            "text_encoder": text_encoder,
            "caption": caption,
            "max_sequence_length": max_sequence_length,
            **kwargs,
        }
        input_keys = set(conditions.keys())
        conditions = super().prepare_conditions(**conditions)
        conditions = {k: v for k, v in conditions.items() if k not in input_keys}
        return conditions

    @torch.no_grad()
    def prepare_latents(
        self,
        vae: AutoencoderKLLTXVideo,
        image: Optional[torch.Tensor] = None,
        video: Optional[torch.Tensor] = None,
        generator: Optional[torch.Generator] = None,
        compute_posterior: bool = True,
        **kwargs,
    ) -> Dict[str, torch.Tensor]:
        conditions = {
            "vae": vae,
            "image": image,
            "video": video,
            "generator": generator,
            "compute_posterior": compute_posterior,
            **kwargs,
        }
        input_keys = set(conditions.keys())
        conditions = super().prepare_latents(**conditions)
        conditions = {k: v for k, v in conditions.items() if k not in input_keys}
        return conditions

    def forward(
        self,
        transformer: LTXVideoTransformer3DModel,
        condition_model_conditions: Dict[str, torch.Tensor],
        latent_model_conditions: Dict[str, torch.Tensor],
        sigmas: torch.Tensor,
        generator: Optional[torch.Generator] = None,
        compute_posterior: bool = True,
        **kwargs,
    ) -> Tuple[torch.Tensor, ...]:
        # TODO(aryan): make this configurable? Should it be?
        first_frame_conditioning_p = 0.1
        min_first_frame_sigma = 0.25

        if compute_posterior:
            latents = latent_model_conditions.pop("latents")
        else:
            posterior = DiagonalGaussianDistribution(latent_model_conditions.pop("latents"))
            latents = posterior.sample(generator=generator)
            del posterior

        latents_mean = latent_model_conditions.pop("latents_mean")
        latents_std = latent_model_conditions.pop("latents_std")

        latents = self._normalize_latents(latents, latents_mean, latents_std)
        noise = torch.zeros_like(latents).normal_(generator=generator)

        if random.random() < first_frame_conditioning_p:
            # Based on Section 2.4 of the paper, it mentions that the first frame timesteps should be a small random value.
            # Making as estimated guess, we limit the sigmas to be at least 0.2.
            # torch.rand_like returns values in [0, 1). We want to make sure that the first frame sigma is <= actual sigmas
            # for image conditioning. In order to do this, we rescale by multiplying with sigmas so the range is [0, sigmas).
            first_frame_sigma = torch.rand_like(sigmas) * sigmas
            first_frame_sigma = torch.min(first_frame_sigma, sigmas.new_full(sigmas.shape, min_first_frame_sigma))

            latents_first_frame, latents_rest = latents[:, :, :1], latents[:, :, 1:]
            noisy_latents_first_frame = FF.flow_match_xt(latents_first_frame, noise[:, :, :1], first_frame_sigma)
            noisy_latents_remaining = FF.flow_match_xt(latents_rest, noise[:, :, 1:], sigmas)
            noisy_latents = torch.cat([noisy_latents_first_frame, noisy_latents_remaining], dim=2)
        else:
            noisy_latents = FF.flow_match_xt(latents, noise, sigmas)

        patch_size = self.transformer_config.patch_size
        patch_size_t = self.transformer_config.patch_size_t

        latents = self._pack_latents(latents, patch_size, patch_size_t)
        noise = self._pack_latents(noise, patch_size, patch_size_t)
        noisy_latents = self._pack_latents(noisy_latents, patch_size, patch_size_t)
        sigmas = sigmas.view(-1, 1, 1).expand(-1, *noisy_latents.shape[1:-1], -1)
        timesteps = (sigmas * 1000.0).long()

        latent_model_conditions["hidden_states"] = noisy_latents.to(latents)

        # TODO(aryan): make this configurable
        frame_rate = 25
        temporal_compression_ratio = 8
        vae_spatial_compression_ratio = 32
        latent_frame_rate = frame_rate / temporal_compression_ratio

        rope_interpolation_scale = [
            1 / latent_frame_rate,
            vae_spatial_compression_ratio,
            vae_spatial_compression_ratio,
        ]

        pred = transformer(
            **latent_model_conditions,
            **condition_model_conditions,
            timestep=timesteps,
            rope_interpolation_scale=rope_interpolation_scale,
            return_dict=False,
        )[0]
        target = FF.flow_match_target(noise, latents)

        return pred, target, sigmas

    def validation(
        self,
        pipeline: LTXPipeline,
        prompt: str,
        image: Optional[Image] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_frames: Optional[int] = None,
        frame_rate: int = 25,
        num_inference_steps: int = 50,
        generator: Optional[torch.Generator] = None,
        **kwargs,
    ) -> List[ArtifactType]:
        if image is not None:
            pipeline = LTXImageToVideoPipeline.from_pipe(pipeline)

        generation_kwargs = {
            "prompt": prompt,
            "image": image,
            "height": height,
            "width": width,
            "num_frames": num_frames,
            "frame_rate": frame_rate,
            "num_inference_steps": num_inference_steps,
            "generator": generator,
            "return_dict": True,
            "output_type": "pil",
        }
        generation_kwargs = get_non_null_items(generation_kwargs)
        video = pipeline(**generation_kwargs).frames[0]
        return [data.VideoArtifact(value=video)]

    def _save_lora_weights(
        self,
        directory: str,
        transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
        scheduler: Optional[SchedulerType] = None,
        *args,
        **kwargs,
    ) -> None:
        # TODO(aryan): this needs refactoring
        if transformer_state_dict is not None:
            LTXPipeline.save_lora_weights(directory, transformer_state_dict, safe_serialization=True)
        if scheduler is not None:
            scheduler.save_pretrained(os.path.join(directory, "scheduler"))

    def _save_model(
        self,
        directory: str,
        transformer: LTXVideoTransformer3DModel,
        transformer_state_dict: Optional[Dict[str, torch.Tensor]] = None,
        scheduler: Optional[SchedulerType] = None,
    ) -> None:
        # TODO(aryan): this needs refactoring
        if transformer_state_dict is not None:
            with init_empty_weights():
                transformer_copy = LTXVideoTransformer3DModel.from_config(transformer.config)
            transformer_copy.load_state_dict(transformer_state_dict, strict=True, assign=True)
            transformer_copy.save_pretrained(os.path.join(directory, "transformer"))
        if scheduler is not None:
            scheduler.save_pretrained(os.path.join(directory, "scheduler"))

    def apply_tensor_parallel(
        self,
        backend: ParallelBackendEnum,
        device_mesh: torch.distributed.DeviceMesh,
        transformer: LTXVideoTransformer3DModel,
        **kwargs,
    ) -> None:
        if backend == ParallelBackendEnum.PTD:
            _apply_tensor_parallel_ptd(device_mesh, transformer)
        else:
            raise NotImplementedError(f"Parallel backend {backend} is not supported for LTXVideoModelSpecification")

    @staticmethod
    def _normalize_latents(
        latents: torch.Tensor, latents_mean: torch.Tensor, latents_std: torch.Tensor, scaling_factor: float = 1.0
    ) -> torch.Tensor:
        # Normalize latents across the channel dimension [B, C, F, H, W]
        latents_mean = latents_mean.view(1, -1, 1, 1, 1).to(device=latents.device)
        latents_std = latents_std.view(1, -1, 1, 1, 1).to(device=latents.device)
        latents = ((latents.float() - latents_mean) * scaling_factor / latents_std).to(latents)
        return latents

    @staticmethod
    def _pack_latents(latents: torch.Tensor, patch_size: int = 1, patch_size_t: int = 1) -> torch.Tensor:
        # Unpacked latents of shape are [B, C, F, H, W] are patched into tokens of shape [B, C, F // p_t, p_t, H // p, p, W // p, p].
        # The patch dimensions are then permuted and collapsed into the channel dimension of shape:
        # [B, F // p_t * H // p * W // p, C * p_t * p * p] (an ndim=3 tensor).
        # dim=0 is the batch size, dim=1 is the effective video sequence length, dim=2 is the effective number of input features
        batch_size, num_channels, num_frames, height, width = latents.shape
        post_patch_num_frames = num_frames // patch_size_t
        post_patch_height = height // patch_size
        post_patch_width = width // patch_size
        latents = latents.reshape(
            batch_size,
            -1,
            post_patch_num_frames,
            patch_size_t,
            post_patch_height,
            patch_size,
            post_patch_width,
            patch_size,
        )
        latents = latents.permute(0, 2, 4, 6, 1, 3, 5, 7).flatten(4, 7).flatten(1, 3)
        return latents


def _apply_tensor_parallel_ptd(
    device_mesh: torch.distributed.device_mesh.DeviceMesh, transformer: LTXVideoTransformer3DModel
) -> None:
    from torch.distributed.tensor.parallel import parallelize_module
    from torch.distributed.tensor.parallel.style import ColwiseParallel, RowwiseParallel

    transformer_plan = {
        # ===== Condition embeddings =====
        # "time_embed.emb.timestep_embedder.linear_1": ColwiseParallel(),
        # "time_embed.emb.timestep_embedder.linear_2": RowwiseParallel(output_layouts=Shard(-1)),
        # "time_embed.linear": ColwiseParallel(input_layouts=Shard(-1), output_layouts=Replicate()),
        # "time_embed": PrepareModuleOutput(output_layouts=(Replicate(), Shard(-1)), desired_output_layouts=(Replicate(), Replicate())),
        # "caption_projection.linear_1": ColwiseParallel(),
        # "caption_projection.linear_2": RowwiseParallel(),
        # "rope": PrepareModuleOutput(output_layouts=(Replicate(), Replicate()), desired_output_layouts=(Shard(1), Shard(1)), use_local_output=False),
        # ===== =====
    }

    for block in transformer.transformer_blocks:
        block_plan = {}

        # ===== Attention =====
        # 8 all-to-all, 3 all-reduce
        # block_plan["attn1.to_q"] = ColwiseParallel(use_local_output=False)
        # block_plan["attn1.to_k"] = ColwiseParallel(use_local_output=False)
        # block_plan["attn1.to_v"] = ColwiseParallel(use_local_output=False)
        # block_plan["attn1.norm_q"] = SequenceParallel()
        # block_plan["attn1.norm_k"] = SequenceParallel()
        # block_plan["attn1.to_out.0"] = RowwiseParallel(input_layouts=Shard(1))
        # block_plan["attn2.to_q"] = ColwiseParallel(use_local_output=False)
        # block_plan["attn2.to_k"] = ColwiseParallel(use_local_output=False)
        # block_plan["attn2.to_v"] = ColwiseParallel(use_local_output=False)
        # block_plan["attn2.norm_q"] = SequenceParallel()
        # block_plan["attn2.norm_k"] = SequenceParallel()
        # block_plan["attn2.to_out.0"] = RowwiseParallel(input_layouts=Shard(1))
        # ===== =====

        block_plan["ff.net.0.proj"] = ColwiseParallel()
        block_plan["ff.net.2"] = RowwiseParallel()

        parallelize_module(block, device_mesh, block_plan)

    parallelize_module(transformer, device_mesh, transformer_plan)