import gradio as gr import spaces import torch from transformers import AutoTokenizer, AutoModelForCausalLM MODEL_NAME = "speakleash/Bielik-11B-v2.3-Instruct-GGUF" MODEL_FILE = "Bielik-11B-v2.3-Instruct.Q4_K_M.gguf" @spaces.GPU def test(): device = torch.device("cuda") tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, model_file=MODEL_FILE, model_type="mistral", gpu_layers=50, hf=True).to(device) inputs = tokenizer("Cześć Bielik, jak się masz?", return_tensors="pt").to(device) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=128, pad_token_id=tokenizer.eos_token_id ) return tokenizer.decode(outputs[0], skip_special_tokens=True) demo = gr.Interface(fn=test, inputs=None, outputs=gr.Text()) demo.launch()