Spaces:
Running
on
Zero
Running
on
Zero
fix: another approach
Browse files
app.py
CHANGED
@@ -1,101 +1,34 @@
|
|
1 |
-
import json
|
2 |
import gradio as gr
|
3 |
-
import torch
|
4 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
import spaces
|
|
|
6 |
import logging
|
7 |
|
8 |
# Configure logging
|
9 |
logging.basicConfig(level=logging.INFO)
|
10 |
|
11 |
-
# Configuration
|
12 |
-
MODEL_NAME = "speakleash/Bielik-11B-v2.3-Instruct"
|
13 |
-
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
-
DEVICE = "cuda"
|
15 |
-
TORCH_DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
16 |
-
MAX_TOKENS = 1000
|
17 |
-
|
18 |
# Load model and tokenizer
|
19 |
logging.info("Loading model and tokenizer...")
|
20 |
-
|
21 |
-
model = AutoModelForCausalLM.from_pretrained(
|
22 |
-
|
23 |
-
)
|
24 |
-
|
25 |
-
logging.info("Model and tokenizer loaded successfully.")
|
26 |
-
|
27 |
-
# Load prompts
|
28 |
-
logging.info("Loading prompts from prompts.json...")
|
29 |
-
with open("prompts.json") as f:
|
30 |
-
prompts = json.load(f)
|
31 |
|
32 |
|
33 |
@spaces.GPU
|
34 |
-
def
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
if not prompt_name:
|
40 |
-
logging.error("No prompt selected.")
|
41 |
-
return "Error: No prompt selected."
|
42 |
-
|
43 |
-
# Get selected prompt
|
44 |
-
selected_prompt = next((p for p in prompts if p["name"] == prompt_name), None)
|
45 |
-
if selected_prompt is None:
|
46 |
-
logging.error(f"Prompt '{prompt_name}' not found.")
|
47 |
-
return f"Error: Prompt '{prompt_name}' not found."
|
48 |
-
|
49 |
-
# Create messages structure
|
50 |
-
messages = [
|
51 |
-
{"role": "system", "content": selected_prompt["system_message"]},
|
52 |
-
{"role": "user", "content": user_input},
|
53 |
-
]
|
54 |
-
|
55 |
-
logging.info("Tokenizing input and generating output...")
|
56 |
-
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to(
|
57 |
-
DEVICE
|
58 |
-
)
|
59 |
-
|
60 |
-
generated_ids = model.generate(
|
61 |
-
input_ids, max_new_tokens=MAX_TOKENS, do_sample=True
|
62 |
-
)
|
63 |
-
|
64 |
-
result = tokenizer.batch_decode(generated_ids)[0]
|
65 |
-
logging.info("Text transformation successful.")
|
66 |
-
return result
|
67 |
-
|
68 |
-
except Exception as e:
|
69 |
-
logging.error("An error occurred during text transformation", exc_info=True)
|
70 |
-
return f"Error: {str(e)}"
|
71 |
-
|
72 |
-
|
73 |
-
# Create Gradio interface
|
74 |
-
with gr.Blocks(title="Bielik Goblin") as interface:
|
75 |
-
gr.Markdown("# Bielik Goblin")
|
76 |
-
|
77 |
-
prompt_select = gr.Dropdown(
|
78 |
-
choices=[p["name"] for p in prompts],
|
79 |
-
label="Wybierz prompt",
|
80 |
-
interactive=True,
|
81 |
-
value="Parafraza", # Set "Parafraza" as the default value
|
82 |
-
)
|
83 |
-
|
84 |
-
user_input = gr.Textbox(
|
85 |
-
label="Tw贸j tekst", placeholder="Wpisz tutaj sw贸j tekst...", lines=5
|
86 |
-
)
|
87 |
|
88 |
-
transform_btn = gr.Button("Przekszta艂膰 tekst", variant="primary")
|
89 |
|
90 |
-
|
91 |
-
|
|
|
|
|
92 |
|
93 |
-
transform_btn.click(
|
94 |
-
fn=transform_text,
|
95 |
-
inputs=[prompt_select, user_input],
|
96 |
-
outputs=output,
|
97 |
-
)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import spaces
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
import logging
|
5 |
|
6 |
# Configure logging
|
7 |
logging.basicConfig(level=logging.INFO)
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
# Load model and tokenizer
|
10 |
logging.info("Loading model and tokenizer...")
|
11 |
+
model_name = "speakleash/Bielik-11B-v2.3-Instruct"
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
@spaces.GPU
|
17 |
+
def process_text(input_text):
|
18 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
19 |
+
outputs = model(**inputs)
|
20 |
+
# Process outputs as needed
|
21 |
+
return outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
|
|
23 |
|
24 |
+
def generate(text):
|
25 |
+
hardcoded_prompt = "Stw贸rz zwi臋z艂e podsumowanie tekstu, zachowuj膮c kluczowe punkty. Maksymalnie 3 zdania"
|
26 |
+
combined_text = hardcoded_prompt + text
|
27 |
+
return process_text(combined_text)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
gr.Interface(
|
31 |
+
fn=generate,
|
32 |
+
inputs=gr.Text(),
|
33 |
+
outputs=gr.Text(),
|
34 |
+
).launch()
|