from typing import Any, Dict, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FluxTransformer2DLoadersMixin, FromOriginalModelMixin, PeftAdapterMixin
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import (
    Attention,
    AttentionProcessor,
    FluxAttnProcessor2_0,
    FluxAttnProcessor2_0_NPU,
    FusedFluxAttnProcessor2_0,
)
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from diffusers.utils.import_utils import is_torch_npu_available
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
from diffusers.models.modeling_outputs import Transformer2DModelOutput

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

@maybe_allow_in_graph
class FluxSingleTransformerBlock(nn.Module):

    def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
        super().__init__()
        self.mlp_hidden_dim = int(dim * mlp_ratio)

        self.norm = AdaLayerNormZeroSingle(dim)
        self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
        self.act_mlp = nn.GELU(approximate="tanh")
        self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)

        if is_torch_npu_available():
            processor = FluxAttnProcessor2_0_NPU()
        else:
            processor = FluxAttnProcessor2_0()
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=dim,
            bias=True,
            processor=processor,
            qk_norm="rms_norm",
            eps=1e-6,
            pre_only=True,
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        cond_hidden_states: torch.Tensor,
        temb: torch.Tensor,
        cond_temb: torch.Tensor,
        image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    ) -> torch.Tensor:
        use_cond = cond_hidden_states is not None
        
        residual = hidden_states
        norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
        mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
        
        if use_cond:
            residual_cond = cond_hidden_states
            norm_cond_hidden_states, cond_gate = self.norm(cond_hidden_states, emb=cond_temb)
            mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_cond_hidden_states))
        
        norm_hidden_states_concat = torch.concat([norm_hidden_states, norm_cond_hidden_states], dim=-2)
        
        joint_attention_kwargs = joint_attention_kwargs or {}
        attn_output = self.attn(
            hidden_states=norm_hidden_states_concat,
            image_rotary_emb=image_rotary_emb,
            use_cond=use_cond,
            **joint_attention_kwargs,
        )
        if use_cond:
            attn_output, cond_attn_output = attn_output

        hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
        gate = gate.unsqueeze(1)
        hidden_states = gate * self.proj_out(hidden_states)
        hidden_states = residual + hidden_states
        
        if use_cond:
            condition_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2)
            cond_gate = cond_gate.unsqueeze(1)
            condition_latents = cond_gate * self.proj_out(condition_latents)
            condition_latents = residual_cond + condition_latents
        
        if hidden_states.dtype == torch.float16:
            hidden_states = hidden_states.clip(-65504, 65504)

        return hidden_states, condition_latents if use_cond else None


@maybe_allow_in_graph
class FluxTransformerBlock(nn.Module):
    def __init__(
        self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
    ):
        super().__init__()

        self.norm1 = AdaLayerNormZero(dim)

        self.norm1_context = AdaLayerNormZero(dim)

        if hasattr(F, "scaled_dot_product_attention"):
            processor = FluxAttnProcessor2_0()
        else:
            raise ValueError(
                "The current PyTorch version does not support the `scaled_dot_product_attention` function."
            )
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            added_kv_proj_dim=dim,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=dim,
            context_pre_only=False,
            bias=True,
            processor=processor,
            qk_norm=qk_norm,
            eps=eps,
        )

        self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")

        self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")

        # let chunk size default to None
        self._chunk_size = None
        self._chunk_dim = 0

    def forward(
        self,
        hidden_states: torch.Tensor,
        cond_hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor,
        temb: torch.Tensor,
        cond_temb: torch.Tensor,
        image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        use_cond = cond_hidden_states is not None
        
        norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)
        if use_cond:
                (
                    norm_cond_hidden_states,
                    cond_gate_msa,
                    cond_shift_mlp,
                    cond_scale_mlp,
                    cond_gate_mlp,
                ) = self.norm1(cond_hidden_states, emb=cond_temb)
                
        norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
            encoder_hidden_states, emb=temb
        )
        
        norm_hidden_states = torch.concat([norm_hidden_states, norm_cond_hidden_states], dim=-2)
        
        joint_attention_kwargs = joint_attention_kwargs or {}
        # Attention.
        attention_outputs = self.attn(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            image_rotary_emb=image_rotary_emb,
            use_cond=use_cond,
            **joint_attention_kwargs,
        )

        attn_output, context_attn_output = attention_outputs[:2]
        cond_attn_output = attention_outputs[2] if use_cond else None

        # Process attention outputs for the `hidden_states`.
        attn_output = gate_msa.unsqueeze(1) * attn_output
        hidden_states = hidden_states + attn_output

        if use_cond:
            cond_attn_output = cond_gate_msa.unsqueeze(1) * cond_attn_output
            cond_hidden_states = cond_hidden_states + cond_attn_output

        norm_hidden_states = self.norm2(hidden_states)
        norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
        
        if use_cond:
            norm_cond_hidden_states = self.norm2(cond_hidden_states)
            norm_cond_hidden_states = (
                norm_cond_hidden_states * (1 + cond_scale_mlp[:, None])
                + cond_shift_mlp[:, None]
            )

        ff_output = self.ff(norm_hidden_states)
        ff_output = gate_mlp.unsqueeze(1) * ff_output
        hidden_states = hidden_states + ff_output
        
        if use_cond:
            cond_ff_output = self.ff(norm_cond_hidden_states)
            cond_ff_output = cond_gate_mlp.unsqueeze(1) * cond_ff_output
            cond_hidden_states = cond_hidden_states + cond_ff_output

        # Process attention outputs for the `encoder_hidden_states`.

        context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
        encoder_hidden_states = encoder_hidden_states + context_attn_output

        norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
        norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]

        context_ff_output = self.ff_context(norm_encoder_hidden_states)
        encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
        if encoder_hidden_states.dtype == torch.float16:
            encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)

        return encoder_hidden_states, hidden_states, cond_hidden_states if use_cond else None


class FluxTransformer2DModel(
    ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, FluxTransformer2DLoadersMixin
):
    _supports_gradient_checkpointing = True
    _no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]

    @register_to_config
    def __init__(
        self,
        patch_size: int = 1,
        in_channels: int = 64,
        out_channels: Optional[int] = None,
        num_layers: int = 19,
        num_single_layers: int = 38,
        attention_head_dim: int = 128,
        num_attention_heads: int = 24,
        joint_attention_dim: int = 4096,
        pooled_projection_dim: int = 768,
        guidance_embeds: bool = False,
        axes_dims_rope: Tuple[int] = (16, 56, 56),
    ):
        super().__init__()
        self.out_channels = out_channels or in_channels
        self.inner_dim = num_attention_heads * attention_head_dim

        self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)

        text_time_guidance_cls = (
            CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
        )
        self.time_text_embed = text_time_guidance_cls(
            embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
        )

        self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
        self.x_embedder = nn.Linear(in_channels, self.inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                FluxTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                )
                for _ in range(num_layers)
            ]
        )

        self.single_transformer_blocks = nn.ModuleList(
            [
                FluxSingleTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=num_attention_heads,
                    attention_head_dim=attention_head_dim,
                )
                for _ in range(num_single_layers)
            ]
        )

        self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
        self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)

        self.gradient_checkpointing = False

    @property
    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
    def fuse_qkv_projections(self):
        """
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>
        """
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

        self.set_attn_processor(FusedFluxAttnProcessor2_0())

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
    def unfuse_qkv_projections(self):
        """Disables the fused QKV projection if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        """
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def forward(
        self,
        hidden_states: torch.Tensor,
        cond_hidden_states: torch.Tensor = None,
        encoder_hidden_states: torch.Tensor = None,
        pooled_projections: torch.Tensor = None,
        timestep: torch.LongTensor = None,
        img_ids: torch.Tensor = None,
        txt_ids: torch.Tensor = None,
        guidance: torch.Tensor = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_block_samples=None,
        controlnet_single_block_samples=None,
        return_dict: bool = True,
        controlnet_blocks_repeat: bool = False,
    ) -> Union[torch.Tensor, Transformer2DModelOutput]:
        if cond_hidden_states is not None:
            use_condition = True
        else:
            use_condition = False
        
        if joint_attention_kwargs is not None:
            joint_attention_kwargs = joint_attention_kwargs.copy()
            lora_scale = joint_attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
                )

        hidden_states = self.x_embedder(hidden_states)
        cond_hidden_states = self.x_embedder(cond_hidden_states)

        timestep = timestep.to(hidden_states.dtype) * 1000
        if guidance is not None:
            guidance = guidance.to(hidden_states.dtype) * 1000
        else:
            guidance = None

        temb = (
            self.time_text_embed(timestep, pooled_projections)
            if guidance is None
            else self.time_text_embed(timestep, guidance, pooled_projections)
        )
        
        cond_temb = (
            self.time_text_embed(torch.ones_like(timestep) * 0, pooled_projections)
                if guidance is None
                else self.time_text_embed(
                    torch.ones_like(timestep) * 0, guidance, pooled_projections
                )
            )
        
        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        if txt_ids.ndim == 3:
            logger.warning(
                "Passing `txt_ids` 3d torch.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d torch Tensor"
            )
            txt_ids = txt_ids[0]
        if img_ids.ndim == 3:
            logger.warning(
                "Passing `img_ids` 3d torch.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d torch Tensor"
            )
            img_ids = img_ids[0]

        ids = torch.cat((txt_ids, img_ids), dim=0)
        image_rotary_emb = self.pos_embed(ids)

        if joint_attention_kwargs is not None and "ip_adapter_image_embeds" in joint_attention_kwargs:
            ip_adapter_image_embeds = joint_attention_kwargs.pop("ip_adapter_image_embeds")
            ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
            joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})

        for index_block, block in enumerate(self.transformer_blocks):
            if torch.is_grad_enabled() and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    image_rotary_emb,
                    cond_temb=cond_temb if use_condition else None,
                    cond_hidden_states=cond_hidden_states if use_condition else None,
                    **ckpt_kwargs,
                )

            else:
                encoder_hidden_states, hidden_states, cond_hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    cond_hidden_states=cond_hidden_states if use_condition else None,
                    temb=temb,
                    cond_temb=cond_temb if use_condition else None,
                    image_rotary_emb=image_rotary_emb,
                    joint_attention_kwargs=joint_attention_kwargs,
                )

            # controlnet residual
            if controlnet_block_samples is not None:
                interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
                interval_control = int(np.ceil(interval_control))
                # For Xlabs ControlNet.
                if controlnet_blocks_repeat:
                    hidden_states = (
                        hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
                    )
                else:
                    hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

        for index_block, block in enumerate(self.single_transformer_blocks):
            if torch.is_grad_enabled() and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states, cond_hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    temb,
                    image_rotary_emb,
                    cond_temb=cond_temb if use_condition else None,
                    cond_hidden_states=cond_hidden_states if use_condition else None,
                    **ckpt_kwargs,
                )

            else:
                hidden_states, cond_hidden_states = block(
                    hidden_states=hidden_states,
                    cond_hidden_states=cond_hidden_states if use_condition else None,
                    temb=temb,
                    cond_temb=cond_temb if use_condition else None,
                    image_rotary_emb=image_rotary_emb,
                    joint_attention_kwargs=joint_attention_kwargs,
                )

            # controlnet residual
            if controlnet_single_block_samples is not None:
                interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
                interval_control = int(np.ceil(interval_control))
                hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
                    hidden_states[:, encoder_hidden_states.shape[1] :, ...]
                    + controlnet_single_block_samples[index_block // interval_control]
                )

        hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]

        hidden_states = self.norm_out(hidden_states, temb)
        output = self.proj_out(hidden_states)

        if USE_PEFT_BACKEND:
            # remove `lora_scale` from each PEFT layer
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)