Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,82 +1,146 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
import spaces
|
4 |
-
from diffusers import FluxPipeline, DiffusionPipeline
|
5 |
-
from torchao.quantization import autoquant
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
# # # normal FluxPipeline
|
10 |
-
# pipeline_normal = FluxPipeline.from_pretrained(
|
11 |
-
# "sayakpaul/FLUX.1-merged",
|
12 |
-
# torch_dtype=torch.bfloat16
|
13 |
-
# ).to("cuda")
|
14 |
-
# pipeline_normal.transformer.to(memory_format=torch.channels_last)
|
15 |
-
# pipeline_normal.transformer = torch.compile(pipeline_normal.transformer, mode="max-autotune", fullgraph=True)
|
16 |
-
|
17 |
-
pipeline_normal = DiffusionPipeline.from_pretrained("sayakpaul/FLUX.1-merged")
|
18 |
-
pipeline_normal.enable_model_cpu_offload()
|
19 |
-
pipeline_normal.load_lora_weights("DarkMoonDragon/TurboRender-flux-dev")
|
20 |
-
# # optimized FluxPipeline
|
21 |
-
# pipeline_optimized = FluxPipeline.from_pretrained(
|
22 |
-
# "camenduru/FLUX.1-dev-diffusers",
|
23 |
-
# torch_dtype=torch.bfloat16
|
24 |
-
# ).to("cuda")
|
25 |
-
# pipeline_optimized.transformer.to(memory_format=torch.channels_last)
|
26 |
-
# pipeline_optimized.transformer = torch.compile(
|
27 |
-
# pipeline_optimized.transformer,
|
28 |
-
# mode="max-autotune",
|
29 |
-
# fullgraph=True
|
30 |
-
# )
|
31 |
-
# # wrap the autoquant call in a try-except block to handle unsupported layers
|
32 |
-
# for name, layer in pipeline_optimized.transformer.named_children():
|
33 |
-
# try:
|
34 |
-
# # apply autoquant to each layer
|
35 |
-
# pipeline_optimized.transformer._modules[name] = autoquant(layer, error_on_unseen=False)
|
36 |
-
# print(f"Successfully quantized {name}")
|
37 |
-
# except AttributeError as e:
|
38 |
-
# print(f"Skipping layer {name} due to error: {e}")
|
39 |
-
# except Exception as e:
|
40 |
-
# print(f"Unexpected error while quantizing {name}: {e}")
|
41 |
-
|
42 |
-
# pipeline_optimized.transformer = autoquant(
|
43 |
-
# pipeline_optimized.transformer,
|
44 |
-
# error_on_unseen=False
|
45 |
-
# )
|
46 |
-
pipeline_optimized = pipeline_normal
|
47 |
-
|
48 |
-
@spaces.GPU(duration=120)
|
49 |
-
def generate_images(prompt, guidance_scale, num_inference_steps):
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
# set up Gradio interface
|
67 |
-
demo = gr.Interface(
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
demo.launch()
|
82 |
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# import torch
|
3 |
+
# import spaces
|
4 |
+
# from diffusers import FluxPipeline, DiffusionPipeline
|
5 |
+
# from torchao.quantization import autoquant
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
# # # # normal FluxPipeline
|
10 |
+
# # pipeline_normal = FluxPipeline.from_pretrained(
|
11 |
+
# # "sayakpaul/FLUX.1-merged",
|
12 |
+
# # torch_dtype=torch.bfloat16
|
13 |
+
# # ).to("cuda")
|
14 |
+
# # pipeline_normal.transformer.to(memory_format=torch.channels_last)
|
15 |
+
# # pipeline_normal.transformer = torch.compile(pipeline_normal.transformer, mode="max-autotune", fullgraph=True)
|
16 |
+
|
17 |
+
# pipeline_normal = DiffusionPipeline.from_pretrained("sayakpaul/FLUX.1-merged")
|
18 |
+
# pipeline_normal.enable_model_cpu_offload()
|
19 |
+
# pipeline_normal.load_lora_weights("DarkMoonDragon/TurboRender-flux-dev")
|
20 |
+
# # # optimized FluxPipeline
|
21 |
+
# # pipeline_optimized = FluxPipeline.from_pretrained(
|
22 |
+
# # "camenduru/FLUX.1-dev-diffusers",
|
23 |
+
# # torch_dtype=torch.bfloat16
|
24 |
+
# # ).to("cuda")
|
25 |
+
# # pipeline_optimized.transformer.to(memory_format=torch.channels_last)
|
26 |
+
# # pipeline_optimized.transformer = torch.compile(
|
27 |
+
# # pipeline_optimized.transformer,
|
28 |
+
# # mode="max-autotune",
|
29 |
+
# # fullgraph=True
|
30 |
+
# # )
|
31 |
+
# # # wrap the autoquant call in a try-except block to handle unsupported layers
|
32 |
+
# # for name, layer in pipeline_optimized.transformer.named_children():
|
33 |
+
# # try:
|
34 |
+
# # # apply autoquant to each layer
|
35 |
+
# # pipeline_optimized.transformer._modules[name] = autoquant(layer, error_on_unseen=False)
|
36 |
+
# # print(f"Successfully quantized {name}")
|
37 |
+
# # except AttributeError as e:
|
38 |
+
# # print(f"Skipping layer {name} due to error: {e}")
|
39 |
+
# # except Exception as e:
|
40 |
+
# # print(f"Unexpected error while quantizing {name}: {e}")
|
41 |
+
|
42 |
+
# # pipeline_optimized.transformer = autoquant(
|
43 |
+
# # pipeline_optimized.transformer,
|
44 |
+
# # error_on_unseen=False
|
45 |
+
# # )
|
46 |
+
# pipeline_optimized = pipeline_normal
|
47 |
+
|
48 |
+
# @spaces.GPU(duration=120)
|
49 |
+
# def generate_images(prompt, guidance_scale, num_inference_steps):
|
50 |
+
# # # generate image with normal pipeline
|
51 |
+
# # image_normal = pipeline_normal(
|
52 |
+
# # prompt=prompt,
|
53 |
+
# # guidance_scale=guidance_scale,
|
54 |
+
# # num_inference_steps=int(num_inference_steps)
|
55 |
+
# # ).images[0]
|
56 |
|
57 |
+
# # generate image with optimized pipeline
|
58 |
+
# image_optimized = pipeline_optimized(
|
59 |
+
# prompt=prompt,
|
60 |
+
# guidance_scale=guidance_scale,
|
61 |
+
# num_inference_steps=int(num_inference_steps)
|
62 |
+
# ).images[0]
|
63 |
|
64 |
+
# return image_optimized
|
65 |
+
|
66 |
+
# # set up Gradio interface
|
67 |
+
# demo = gr.Interface(
|
68 |
+
# fn=generate_images,
|
69 |
+
# inputs=[
|
70 |
+
# gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt"),
|
71 |
+
# gr.Slider(1.0, 10.0, step=0.5, value=3.5, label="Guidance Scale"),
|
72 |
+
# gr.Slider(10, 100, step=1, value=50, label="Number of Inference Steps")
|
73 |
+
# ],
|
74 |
+
# outputs=[
|
75 |
+
# gr.Image(type="pil", label="Optimized FluxPipeline")
|
76 |
+
# ],
|
77 |
+
# title="FluxPipeline Comparison",
|
78 |
+
# description="Compare images generated by the normal FluxPipeline and the optimized one using torchao and torch.compile()."
|
79 |
+
# )
|
80 |
+
|
81 |
+
# demo.launch()
|
82 |
+
import gradio as gr
|
83 |
+
import torch
|
84 |
+
from diffusers import FluxPipeline
|
85 |
+
from torchao import swap_conv2d_1x1_to_linear, apply_dynamic_quant
|
86 |
+
|
87 |
+
# Step 1: Enable PyTorch 2-specific optimizations
|
88 |
+
torch._inductor.config.conv_1x1_as_mm = True
|
89 |
+
torch._inductor.config.coordinate_descent_tuning = True
|
90 |
+
torch._inductor.config.epilogue_fusion = False
|
91 |
+
torch._inductor.config.coordinate_descent_check_all_directions = True
|
92 |
+
torch._inductor.config.force_fuse_int_mm_with_mul = True
|
93 |
+
torch._inductor.config.use_mixed_mm = True
|
94 |
+
|
95 |
+
# Step 2: Load the Flux pipeline with bfloat16 precision
|
96 |
+
pipe = FluxPipeline.from_pretrained(
|
97 |
+
"sayakpaul/FLUX.1-merged",
|
98 |
+
torch_dtype=torch.bfloat16
|
99 |
+
).to("cuda")
|
100 |
+
|
101 |
+
# Step 3: Apply attention optimizations
|
102 |
+
pipe.fuse_qkv_projections()
|
103 |
+
|
104 |
+
# Step 4: Change memory layout for performance boost
|
105 |
+
pipe.unet.to(memory_format=torch.channels_last)
|
106 |
+
pipe.vae.to(memory_format=torch.channels_last)
|
107 |
+
|
108 |
+
# Step 5: Swap Conv2D 1x1 layers to Linear and apply dynamic quantization
|
109 |
+
def dynamic_quant_filter_fn(mod, *args):
|
110 |
+
return isinstance(mod, torch.nn.Linear) and mod.in_features > 16
|
111 |
+
|
112 |
+
def conv_filter_fn(mod, *args):
|
113 |
+
return isinstance(mod, torch.nn.Conv2d) and mod.kernel_size == (1, 1)
|
114 |
+
|
115 |
+
swap_conv2d_1x1_to_linear(pipe.unet, conv_filter_fn)
|
116 |
+
swap_conv2d_1x1_to_linear(pipe.vae, conv_filter_fn)
|
117 |
+
|
118 |
+
apply_dynamic_quant(pipe.unet, dynamic_quant_filter_fn)
|
119 |
+
apply_dynamic_quant(pipe.vae, dynamic_quant_filter_fn)
|
120 |
+
|
121 |
+
# Step 6: Compile the UNet and VAE for optimized kernels
|
122 |
+
pipe.unet = torch.compile(pipe.unet, mode="max-autotune", fullgraph=True)
|
123 |
+
pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)
|
124 |
+
|
125 |
+
# Image generation function
|
126 |
+
def generate_image(prompt, guidance_scale, num_inference_steps):
|
127 |
+
# Generate the image using the optimized pipeline
|
128 |
+
image = pipe(prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps).images[0]
|
129 |
+
return image
|
130 |
+
|
131 |
+
# Gradio UI
|
132 |
+
with gr.Blocks() as demo:
|
133 |
+
gr.Markdown("# Optimized Flux Model Inference")
|
134 |
+
|
135 |
+
with gr.Row():
|
136 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Enter your text prompt here")
|
137 |
+
guidance_scale = gr.Slider(0.0, 15.0, value=7.5, step=0.1, label="Guidance Scale")
|
138 |
+
steps = gr.Slider(5, 50, value=30, step=1, label="Inference Steps")
|
139 |
+
|
140 |
+
image_output = gr.Image(type="pil", label="Generated Image")
|
141 |
+
|
142 |
+
generate_button = gr.Button("Generate Image")
|
143 |
+
generate_button.click(generate_image, inputs=[prompt, guidance_scale, steps], outputs=image_output)
|
144 |
|
145 |
demo.launch()
|
146 |
|