root
commited on
Commit
·
5524ef7
1
Parent(s):
48a9e55
ss
Browse files
app.py
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
utils.py
CHANGED
@@ -37,40 +37,6 @@ def extract_mfcc_features(y, sr, n_mfcc=20):
|
|
37 |
# Return a fallback feature vector if extraction fails
|
38 |
return np.zeros(n_mfcc)
|
39 |
|
40 |
-
def calculate_lyrics_length(duration):
|
41 |
-
"""
|
42 |
-
Calculate appropriate lyrics length based on audio duration.
|
43 |
-
Uses a more conservative calculation that generates shorter lyrics:
|
44 |
-
- Average words per line (8-10 words)
|
45 |
-
- Reduced words per minute (45 words instead of 135)
|
46 |
-
- Simplified song structure
|
47 |
-
"""
|
48 |
-
# Convert duration to minutes
|
49 |
-
duration_minutes = duration / 60
|
50 |
-
|
51 |
-
# Calculate total words based on duration
|
52 |
-
# Using 45 words per minute (reduced from 135)
|
53 |
-
total_words = int(duration_minutes * 90)
|
54 |
-
|
55 |
-
# Calculate number of lines
|
56 |
-
# Assuming 8-10 words per line
|
57 |
-
words_per_line = 9 # average
|
58 |
-
total_lines = total_words // words_per_line
|
59 |
-
|
60 |
-
# Adjust for song structure with shorter lengths
|
61 |
-
if total_lines < 6:
|
62 |
-
# Very short song - keep it simple
|
63 |
-
return max(2, total_lines)
|
64 |
-
elif total_lines < 10:
|
65 |
-
# Short song - one verse and chorus
|
66 |
-
return min(6, total_lines)
|
67 |
-
elif total_lines < 15:
|
68 |
-
# Medium song - two verses and chorus
|
69 |
-
return min(10, total_lines)
|
70 |
-
else:
|
71 |
-
# Longer song - two verses, chorus, and bridge
|
72 |
-
return min(15, total_lines)
|
73 |
-
|
74 |
def format_genre_results(top_genres):
|
75 |
"""Format genre classification results for display."""
|
76 |
result = "Top Detected Genres:\n"
|
@@ -89,17 +55,3 @@ def ensure_cuda_availability():
|
|
89 |
print("CUDA is not available. Using CPU for inference.")
|
90 |
return cuda_available
|
91 |
|
92 |
-
def preprocess_audio_for_model(waveform, sample_rate, target_sample_rate=16000, max_length=16000):
|
93 |
-
"""Preprocess audio for model input (resample, pad/trim)."""
|
94 |
-
# Resample if needed
|
95 |
-
if sample_rate != target_sample_rate:
|
96 |
-
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=target_sample_rate)
|
97 |
-
|
98 |
-
# Trim or pad to expected length
|
99 |
-
if len(waveform) > max_length:
|
100 |
-
waveform = waveform[:max_length]
|
101 |
-
elif len(waveform) < max_length:
|
102 |
-
padding = max_length - len(waveform)
|
103 |
-
waveform = np.pad(waveform, (0, padding), 'constant')
|
104 |
-
|
105 |
-
return waveform
|
|
|
37 |
# Return a fallback feature vector if extraction fails
|
38 |
return np.zeros(n_mfcc)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def format_genre_results(top_genres):
|
41 |
"""Format genre classification results for display."""
|
42 |
result = "Top Detected Genres:\n"
|
|
|
55 |
print("CUDA is not available. Using CPU for inference.")
|
56 |
return cuda_available
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|