Spaces:
Running
Running
fix module
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- f5_tts/api.py +59 -50
- f5_tts/configs/{E2TTS_Base.yaml → E2TTS_Base_train.yaml} +7 -11
- f5_tts/configs/{E2TTS_Small.yaml → E2TTS_Small_train.yaml} +7 -11
- f5_tts/configs/{F5TTS_Base.yaml → F5TTS_Base_train.yaml} +11 -15
- f5_tts/configs/{F5TTS_Small.yaml → F5TTS_Small_train.yaml} +7 -11
- f5_tts/configs/F5TTS_v1_Base.yaml +0 -53
- f5_tts/eval/eval_infer_batch.py +27 -22
- f5_tts/eval/eval_infer_batch.sh +6 -11
- f5_tts/eval/eval_librispeech_test_clean.py +27 -21
- f5_tts/eval/eval_seedtts_testset.py +27 -21
- f5_tts/eval/eval_utmos.py +16 -14
- f5_tts/eval/utils_eval.py +6 -11
- f5_tts/infer/README.md +85 -40
- f5_tts/infer/SHARED.md +9 -19
- f5_tts/infer/__pycache__/infer_cli.cpython-310.pyc +0 -0
- f5_tts/infer/__pycache__/utils_infer.cpython-310.pyc +0 -0
- f5_tts/infer/examples/basic/basic.toml +3 -3
- f5_tts/infer/examples/multi/story.toml +2 -2
- f5_tts/infer/infer_cli.py +33 -28
- f5_tts/infer/infer_gradio.py +13 -52
- f5_tts/infer/speech_edit.py +27 -26
- f5_tts/infer/utils_infer.py +76 -105
- f5_tts/model/__pycache__/__init__.cpython-310.pyc +0 -0
- f5_tts/model/__pycache__/cfm.cpython-310.pyc +0 -0
- f5_tts/model/__pycache__/dataset.cpython-310.pyc +0 -0
- f5_tts/model/__pycache__/modules.cpython-310.pyc +0 -0
- f5_tts/model/__pycache__/trainer.cpython-310.pyc +0 -0
- f5_tts/model/__pycache__/utils.cpython-310.pyc +0 -0
- f5_tts/model/backbones/README.md +2 -2
- f5_tts/model/backbones/__pycache__/dit.cpython-310.pyc +0 -0
- f5_tts/model/backbones/__pycache__/mmdit.cpython-310.pyc +0 -0
- f5_tts/model/backbones/__pycache__/unett.cpython-310.pyc +0 -0
- f5_tts/model/backbones/dit.py +8 -63
- f5_tts/model/backbones/mmdit.py +9 -52
- f5_tts/model/backbones/unett.py +5 -36
- f5_tts/model/cfm.py +2 -3
- f5_tts/model/dataset.py +3 -6
- f5_tts/model/modules.py +42 -115
- f5_tts/model/trainer.py +18 -29
- f5_tts/model/utils.py +16 -8
- f5_tts/scripts/count_max_epoch.py +1 -1
- f5_tts/socket_client.py +0 -61
- f5_tts/socket_server.py +98 -169
- f5_tts/train/README.md +5 -5
- f5_tts/train/__pycache__/finetune_gradio.cpython-310.pyc +0 -0
- f5_tts/train/datasets/prepare_csv_wavs.py +2 -2
- f5_tts/train/datasets/prepare_emilia.py +4 -4
- f5_tts/train/datasets/prepare_libritts.py +10 -5
- f5_tts/train/datasets/prepare_metadata.py +12 -0
- f5_tts/train/finetune_cli.py +20 -53
f5_tts/api.py
CHANGED
@@ -5,43 +5,43 @@ from importlib.resources import files
|
|
5 |
import soundfile as sf
|
6 |
import tqdm
|
7 |
from cached_path import cached_path
|
8 |
-
from omegaconf import OmegaConf
|
9 |
|
10 |
from f5_tts.infer.utils_infer import (
|
|
|
|
|
11 |
load_model,
|
12 |
load_vocoder,
|
13 |
-
transcribe,
|
14 |
preprocess_ref_audio_text,
|
15 |
-
infer_process,
|
16 |
remove_silence_for_generated_wav,
|
17 |
save_spectrogram,
|
|
|
|
|
18 |
)
|
19 |
-
from f5_tts.model import DiT, UNetT
|
20 |
from f5_tts.model.utils import seed_everything
|
21 |
|
22 |
|
23 |
class F5TTS:
|
24 |
def __init__(
|
25 |
self,
|
26 |
-
|
27 |
ckpt_file="",
|
28 |
vocab_file="",
|
29 |
ode_method="euler",
|
30 |
use_ema=True,
|
31 |
-
|
|
|
32 |
device=None,
|
33 |
hf_cache_dir=None,
|
34 |
):
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
self.
|
40 |
-
self.
|
41 |
-
|
42 |
-
|
43 |
-
self.use_ema = use_ema
|
44 |
-
|
45 |
if device is not None:
|
46 |
self.device = device
|
47 |
else:
|
@@ -58,31 +58,39 @@ class F5TTS:
|
|
58 |
)
|
59 |
|
60 |
# Load models
|
61 |
-
self.
|
62 |
-
|
|
|
63 |
)
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
else:
|
78 |
-
raise ValueError(f"Unknown model type: {
|
79 |
|
80 |
-
if not ckpt_file:
|
81 |
-
ckpt_file = str(
|
82 |
-
cached_path(f"hf://SWivid/{repo_name}/{model}/model_{ckpt_step}.{ckpt_type}", cache_dir=hf_cache_dir)
|
83 |
-
)
|
84 |
self.ema_model = load_model(
|
85 |
-
model_cls,
|
86 |
)
|
87 |
|
88 |
def transcribe(self, ref_audio, language=None):
|
@@ -94,8 +102,8 @@ class F5TTS:
|
|
94 |
if remove_silence:
|
95 |
remove_silence_for_generated_wav(file_wave)
|
96 |
|
97 |
-
def export_spectrogram(self,
|
98 |
-
save_spectrogram(
|
99 |
|
100 |
def infer(
|
101 |
self,
|
@@ -113,16 +121,17 @@ class F5TTS:
|
|
113 |
fix_duration=None,
|
114 |
remove_silence=False,
|
115 |
file_wave=None,
|
116 |
-
|
117 |
-
seed
|
118 |
):
|
119 |
-
if seed
|
120 |
-
|
121 |
-
seed_everything(
|
|
|
122 |
|
123 |
ref_file, ref_text = preprocess_ref_audio_text(ref_file, ref_text, device=self.device)
|
124 |
|
125 |
-
wav, sr,
|
126 |
ref_file,
|
127 |
ref_text,
|
128 |
gen_text,
|
@@ -144,22 +153,22 @@ class F5TTS:
|
|
144 |
if file_wave is not None:
|
145 |
self.export_wav(wav, file_wave, remove_silence)
|
146 |
|
147 |
-
if
|
148 |
-
self.export_spectrogram(
|
149 |
|
150 |
-
return wav, sr,
|
151 |
|
152 |
|
153 |
if __name__ == "__main__":
|
154 |
f5tts = F5TTS()
|
155 |
|
156 |
-
wav, sr,
|
157 |
ref_file=str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav")),
|
158 |
ref_text="some call me nature, others call me mother nature.",
|
159 |
gen_text="""I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.""",
|
160 |
file_wave=str(files("f5_tts").joinpath("../../tests/api_out.wav")),
|
161 |
-
|
162 |
-
seed=
|
163 |
)
|
164 |
|
165 |
print("seed :", f5tts.seed)
|
|
|
5 |
import soundfile as sf
|
6 |
import tqdm
|
7 |
from cached_path import cached_path
|
|
|
8 |
|
9 |
from f5_tts.infer.utils_infer import (
|
10 |
+
hop_length,
|
11 |
+
infer_process,
|
12 |
load_model,
|
13 |
load_vocoder,
|
|
|
14 |
preprocess_ref_audio_text,
|
|
|
15 |
remove_silence_for_generated_wav,
|
16 |
save_spectrogram,
|
17 |
+
transcribe,
|
18 |
+
target_sample_rate,
|
19 |
)
|
20 |
+
from f5_tts.model import DiT, UNetT
|
21 |
from f5_tts.model.utils import seed_everything
|
22 |
|
23 |
|
24 |
class F5TTS:
|
25 |
def __init__(
|
26 |
self,
|
27 |
+
model_type="F5-TTS",
|
28 |
ckpt_file="",
|
29 |
vocab_file="",
|
30 |
ode_method="euler",
|
31 |
use_ema=True,
|
32 |
+
vocoder_name="vocos",
|
33 |
+
local_path=None,
|
34 |
device=None,
|
35 |
hf_cache_dir=None,
|
36 |
):
|
37 |
+
# Initialize parameters
|
38 |
+
self.final_wave = None
|
39 |
+
self.target_sample_rate = target_sample_rate
|
40 |
+
self.hop_length = hop_length
|
41 |
+
self.seed = -1
|
42 |
+
self.mel_spec_type = vocoder_name
|
43 |
+
|
44 |
+
# Set device
|
|
|
|
|
45 |
if device is not None:
|
46 |
self.device = device
|
47 |
else:
|
|
|
58 |
)
|
59 |
|
60 |
# Load models
|
61 |
+
self.load_vocoder_model(vocoder_name, local_path=local_path, hf_cache_dir=hf_cache_dir)
|
62 |
+
self.load_ema_model(
|
63 |
+
model_type, ckpt_file, vocoder_name, vocab_file, ode_method, use_ema, hf_cache_dir=hf_cache_dir
|
64 |
)
|
65 |
|
66 |
+
def load_vocoder_model(self, vocoder_name, local_path=None, hf_cache_dir=None):
|
67 |
+
self.vocoder = load_vocoder(vocoder_name, local_path is not None, local_path, self.device, hf_cache_dir)
|
68 |
+
|
69 |
+
def load_ema_model(self, model_type, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema, hf_cache_dir=None):
|
70 |
+
if model_type == "F5-TTS":
|
71 |
+
if not ckpt_file:
|
72 |
+
if mel_spec_type == "vocos":
|
73 |
+
ckpt_file = str(
|
74 |
+
cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors", cache_dir=hf_cache_dir)
|
75 |
+
)
|
76 |
+
elif mel_spec_type == "bigvgan":
|
77 |
+
ckpt_file = str(
|
78 |
+
cached_path("hf://SWivid/F5-TTS/F5TTS_Base_bigvgan/model_1250000.pt", cache_dir=hf_cache_dir)
|
79 |
+
)
|
80 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
81 |
+
model_cls = DiT
|
82 |
+
elif model_type == "E2-TTS":
|
83 |
+
if not ckpt_file:
|
84 |
+
ckpt_file = str(
|
85 |
+
cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors", cache_dir=hf_cache_dir)
|
86 |
+
)
|
87 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
88 |
+
model_cls = UNetT
|
89 |
else:
|
90 |
+
raise ValueError(f"Unknown model type: {model_type}")
|
91 |
|
|
|
|
|
|
|
|
|
92 |
self.ema_model = load_model(
|
93 |
+
model_cls, model_cfg, ckpt_file, mel_spec_type, vocab_file, ode_method, use_ema, self.device
|
94 |
)
|
95 |
|
96 |
def transcribe(self, ref_audio, language=None):
|
|
|
102 |
if remove_silence:
|
103 |
remove_silence_for_generated_wav(file_wave)
|
104 |
|
105 |
+
def export_spectrogram(self, spect, file_spect):
|
106 |
+
save_spectrogram(spect, file_spect)
|
107 |
|
108 |
def infer(
|
109 |
self,
|
|
|
121 |
fix_duration=None,
|
122 |
remove_silence=False,
|
123 |
file_wave=None,
|
124 |
+
file_spect=None,
|
125 |
+
seed=-1,
|
126 |
):
|
127 |
+
if seed == -1:
|
128 |
+
seed = random.randint(0, sys.maxsize)
|
129 |
+
seed_everything(seed)
|
130 |
+
self.seed = seed
|
131 |
|
132 |
ref_file, ref_text = preprocess_ref_audio_text(ref_file, ref_text, device=self.device)
|
133 |
|
134 |
+
wav, sr, spect = infer_process(
|
135 |
ref_file,
|
136 |
ref_text,
|
137 |
gen_text,
|
|
|
153 |
if file_wave is not None:
|
154 |
self.export_wav(wav, file_wave, remove_silence)
|
155 |
|
156 |
+
if file_spect is not None:
|
157 |
+
self.export_spectrogram(spect, file_spect)
|
158 |
|
159 |
+
return wav, sr, spect
|
160 |
|
161 |
|
162 |
if __name__ == "__main__":
|
163 |
f5tts = F5TTS()
|
164 |
|
165 |
+
wav, sr, spect = f5tts.infer(
|
166 |
ref_file=str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav")),
|
167 |
ref_text="some call me nature, others call me mother nature.",
|
168 |
gen_text="""I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences.""",
|
169 |
file_wave=str(files("f5_tts").joinpath("../../tests/api_out.wav")),
|
170 |
+
file_spect=str(files("f5_tts").joinpath("../../tests/api_out.png")),
|
171 |
+
seed=-1, # random seed = -1
|
172 |
)
|
173 |
|
174 |
print("seed :", f5tts.seed)
|
f5_tts/configs/{E2TTS_Base.yaml → E2TTS_Base_train.yaml}
RENAMED
@@ -1,16 +1,16 @@
|
|
1 |
hydra:
|
2 |
run:
|
3 |
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
4 |
-
|
5 |
datasets:
|
6 |
name: Emilia_ZH_EN # dataset name
|
7 |
batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
|
8 |
-
batch_size_type: frame # frame
|
9 |
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
10 |
num_workers: 16
|
11 |
|
12 |
optim:
|
13 |
-
epochs:
|
14 |
learning_rate: 7.5e-5
|
15 |
num_warmup_updates: 20000 # warmup updates
|
16 |
grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
|
@@ -20,29 +20,25 @@ optim:
|
|
20 |
model:
|
21 |
name: E2TTS_Base
|
22 |
tokenizer: pinyin
|
23 |
-
tokenizer_path:
|
24 |
-
backbone: UNetT
|
25 |
arch:
|
26 |
dim: 1024
|
27 |
depth: 24
|
28 |
heads: 16
|
29 |
ff_mult: 4
|
30 |
-
text_mask_padding: False
|
31 |
-
pe_attn_head: 1
|
32 |
mel_spec:
|
33 |
target_sample_rate: 24000
|
34 |
n_mel_channels: 100
|
35 |
hop_length: 256
|
36 |
win_length: 1024
|
37 |
n_fft: 1024
|
38 |
-
mel_spec_type: vocos # vocos
|
39 |
vocoder:
|
40 |
is_local: False # use local offline ckpt or not
|
41 |
-
local_path:
|
42 |
|
43 |
ckpts:
|
44 |
-
logger: wandb # wandb | tensorboard |
|
45 |
-
log_samples: True # infer random sample per save checkpoint. wip, normal to fail with extra long samples
|
46 |
save_per_updates: 50000 # save checkpoint per updates
|
47 |
keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
|
48 |
last_per_updates: 5000 # save last checkpoint per updates
|
|
|
1 |
hydra:
|
2 |
run:
|
3 |
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
4 |
+
|
5 |
datasets:
|
6 |
name: Emilia_ZH_EN # dataset name
|
7 |
batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
|
8 |
+
batch_size_type: frame # "frame" or "sample"
|
9 |
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
10 |
num_workers: 16
|
11 |
|
12 |
optim:
|
13 |
+
epochs: 15
|
14 |
learning_rate: 7.5e-5
|
15 |
num_warmup_updates: 20000 # warmup updates
|
16 |
grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
|
|
|
20 |
model:
|
21 |
name: E2TTS_Base
|
22 |
tokenizer: pinyin
|
23 |
+
tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
|
|
|
24 |
arch:
|
25 |
dim: 1024
|
26 |
depth: 24
|
27 |
heads: 16
|
28 |
ff_mult: 4
|
|
|
|
|
29 |
mel_spec:
|
30 |
target_sample_rate: 24000
|
31 |
n_mel_channels: 100
|
32 |
hop_length: 256
|
33 |
win_length: 1024
|
34 |
n_fft: 1024
|
35 |
+
mel_spec_type: vocos # 'vocos' or 'bigvgan'
|
36 |
vocoder:
|
37 |
is_local: False # use local offline ckpt or not
|
38 |
+
local_path: None # local vocoder path
|
39 |
|
40 |
ckpts:
|
41 |
+
logger: wandb # wandb | tensorboard | None
|
|
|
42 |
save_per_updates: 50000 # save checkpoint per updates
|
43 |
keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
|
44 |
last_per_updates: 5000 # save last checkpoint per updates
|
f5_tts/configs/{E2TTS_Small.yaml → E2TTS_Small_train.yaml}
RENAMED
@@ -1,16 +1,16 @@
|
|
1 |
hydra:
|
2 |
run:
|
3 |
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
4 |
-
|
5 |
datasets:
|
6 |
name: Emilia_ZH_EN
|
7 |
batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
|
8 |
-
batch_size_type: frame # frame
|
9 |
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
10 |
num_workers: 16
|
11 |
|
12 |
optim:
|
13 |
-
epochs:
|
14 |
learning_rate: 7.5e-5
|
15 |
num_warmup_updates: 20000 # warmup updates
|
16 |
grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
|
@@ -20,29 +20,25 @@ optim:
|
|
20 |
model:
|
21 |
name: E2TTS_Small
|
22 |
tokenizer: pinyin
|
23 |
-
tokenizer_path:
|
24 |
-
backbone: UNetT
|
25 |
arch:
|
26 |
dim: 768
|
27 |
depth: 20
|
28 |
heads: 12
|
29 |
ff_mult: 4
|
30 |
-
text_mask_padding: False
|
31 |
-
pe_attn_head: 1
|
32 |
mel_spec:
|
33 |
target_sample_rate: 24000
|
34 |
n_mel_channels: 100
|
35 |
hop_length: 256
|
36 |
win_length: 1024
|
37 |
n_fft: 1024
|
38 |
-
mel_spec_type: vocos # vocos
|
39 |
vocoder:
|
40 |
is_local: False # use local offline ckpt or not
|
41 |
-
local_path:
|
42 |
|
43 |
ckpts:
|
44 |
-
logger: wandb # wandb | tensorboard |
|
45 |
-
log_samples: True # infer random sample per save checkpoint. wip, normal to fail with extra long samples
|
46 |
save_per_updates: 50000 # save checkpoint per updates
|
47 |
keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
|
48 |
last_per_updates: 5000 # save last checkpoint per updates
|
|
|
1 |
hydra:
|
2 |
run:
|
3 |
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
4 |
+
|
5 |
datasets:
|
6 |
name: Emilia_ZH_EN
|
7 |
batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
|
8 |
+
batch_size_type: frame # "frame" or "sample"
|
9 |
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
10 |
num_workers: 16
|
11 |
|
12 |
optim:
|
13 |
+
epochs: 15
|
14 |
learning_rate: 7.5e-5
|
15 |
num_warmup_updates: 20000 # warmup updates
|
16 |
grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
|
|
|
20 |
model:
|
21 |
name: E2TTS_Small
|
22 |
tokenizer: pinyin
|
23 |
+
tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
|
|
|
24 |
arch:
|
25 |
dim: 768
|
26 |
depth: 20
|
27 |
heads: 12
|
28 |
ff_mult: 4
|
|
|
|
|
29 |
mel_spec:
|
30 |
target_sample_rate: 24000
|
31 |
n_mel_channels: 100
|
32 |
hop_length: 256
|
33 |
win_length: 1024
|
34 |
n_fft: 1024
|
35 |
+
mel_spec_type: vocos # 'vocos' or 'bigvgan'
|
36 |
vocoder:
|
37 |
is_local: False # use local offline ckpt or not
|
38 |
+
local_path: None # local vocoder path
|
39 |
|
40 |
ckpts:
|
41 |
+
logger: wandb # wandb | tensorboard | None
|
|
|
42 |
save_per_updates: 50000 # save checkpoint per updates
|
43 |
keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
|
44 |
last_per_updates: 5000 # save last checkpoint per updates
|
f5_tts/configs/{F5TTS_Base.yaml → F5TTS_Base_train.yaml}
RENAMED
@@ -1,16 +1,16 @@
|
|
1 |
hydra:
|
2 |
run:
|
3 |
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
4 |
-
|
5 |
datasets:
|
6 |
-
name:
|
7 |
-
batch_size_per_gpu:
|
8 |
-
batch_size_type: frame # frame
|
9 |
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
10 |
num_workers: 16
|
11 |
|
12 |
optim:
|
13 |
-
epochs:
|
14 |
learning_rate: 7.5e-5
|
15 |
num_warmup_updates: 20000 # warmup updates
|
16 |
grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
|
@@ -20,17 +20,14 @@ optim:
|
|
20 |
model:
|
21 |
name: F5TTS_Base # model name
|
22 |
tokenizer: char # tokenizer type
|
23 |
-
tokenizer_path:
|
24 |
-
backbone: DiT
|
25 |
arch:
|
26 |
dim: 1024
|
27 |
depth: 22
|
28 |
heads: 16
|
29 |
ff_mult: 2
|
30 |
text_dim: 512
|
31 |
-
text_mask_padding: False
|
32 |
conv_layers: 4
|
33 |
-
pe_attn_head: 1
|
34 |
checkpoint_activations: False # recompute activations and save memory for extra compute
|
35 |
mel_spec:
|
36 |
target_sample_rate: 24000
|
@@ -38,15 +35,14 @@ model:
|
|
38 |
hop_length: 256
|
39 |
win_length: 1024
|
40 |
n_fft: 1024
|
41 |
-
mel_spec_type: vocos # vocos
|
42 |
vocoder:
|
43 |
-
is_local:
|
44 |
-
local_path:
|
45 |
|
46 |
ckpts:
|
47 |
-
logger: tensorboard # wandb | tensorboard |
|
48 |
-
|
49 |
-
save_per_updates: 50000 # save checkpoint per updates
|
50 |
keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
|
51 |
last_per_updates: 5000 # save last checkpoint per updates
|
52 |
save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
|
|
|
1 |
hydra:
|
2 |
run:
|
3 |
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
4 |
+
|
5 |
datasets:
|
6 |
+
name: vn_1000h # dataset name
|
7 |
+
batch_size_per_gpu: 2000 # 8 GPUs, 8 * 38400 = 307200
|
8 |
+
batch_size_type: frame # "frame" or "sample"
|
9 |
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
10 |
num_workers: 16
|
11 |
|
12 |
optim:
|
13 |
+
epochs: 200
|
14 |
learning_rate: 7.5e-5
|
15 |
num_warmup_updates: 20000 # warmup updates
|
16 |
grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
|
|
|
20 |
model:
|
21 |
name: F5TTS_Base # model name
|
22 |
tokenizer: char # tokenizer type
|
23 |
+
tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
|
|
|
24 |
arch:
|
25 |
dim: 1024
|
26 |
depth: 22
|
27 |
heads: 16
|
28 |
ff_mult: 2
|
29 |
text_dim: 512
|
|
|
30 |
conv_layers: 4
|
|
|
31 |
checkpoint_activations: False # recompute activations and save memory for extra compute
|
32 |
mel_spec:
|
33 |
target_sample_rate: 24000
|
|
|
35 |
hop_length: 256
|
36 |
win_length: 1024
|
37 |
n_fft: 1024
|
38 |
+
mel_spec_type: vocos # 'vocos' or 'bigvgan'
|
39 |
vocoder:
|
40 |
+
is_local: True # use local offline ckpt or not
|
41 |
+
local_path: /mnt/i/Project/F5-TTS/ckpts/vocos # local vocoder path
|
42 |
|
43 |
ckpts:
|
44 |
+
logger: tensorboard # wandb | tensorboard | None
|
45 |
+
save_per_updates: 30000 # save checkpoint per updates
|
|
|
46 |
keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
|
47 |
last_per_updates: 5000 # save last checkpoint per updates
|
48 |
save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
|
f5_tts/configs/{F5TTS_Small.yaml → F5TTS_Small_train.yaml}
RENAMED
@@ -1,16 +1,16 @@
|
|
1 |
hydra:
|
2 |
run:
|
3 |
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
4 |
-
|
5 |
datasets:
|
6 |
name: Emilia_ZH_EN
|
7 |
batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
|
8 |
-
batch_size_type: frame # frame
|
9 |
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
10 |
num_workers: 16
|
11 |
|
12 |
optim:
|
13 |
-
epochs:
|
14 |
learning_rate: 7.5e-5
|
15 |
num_warmup_updates: 20000 # warmup updates
|
16 |
grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
|
@@ -20,17 +20,14 @@ optim:
|
|
20 |
model:
|
21 |
name: F5TTS_Small
|
22 |
tokenizer: pinyin
|
23 |
-
tokenizer_path:
|
24 |
-
backbone: DiT
|
25 |
arch:
|
26 |
dim: 768
|
27 |
depth: 18
|
28 |
heads: 12
|
29 |
ff_mult: 2
|
30 |
text_dim: 512
|
31 |
-
text_mask_padding: False
|
32 |
conv_layers: 4
|
33 |
-
pe_attn_head: 1
|
34 |
checkpoint_activations: False # recompute activations and save memory for extra compute
|
35 |
mel_spec:
|
36 |
target_sample_rate: 24000
|
@@ -38,14 +35,13 @@ model:
|
|
38 |
hop_length: 256
|
39 |
win_length: 1024
|
40 |
n_fft: 1024
|
41 |
-
mel_spec_type: vocos # vocos
|
42 |
vocoder:
|
43 |
is_local: False # use local offline ckpt or not
|
44 |
-
local_path:
|
45 |
|
46 |
ckpts:
|
47 |
-
logger: wandb # wandb | tensorboard |
|
48 |
-
log_samples: True # infer random sample per save checkpoint. wip, normal to fail with extra long samples
|
49 |
save_per_updates: 50000 # save checkpoint per updates
|
50 |
keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
|
51 |
last_per_updates: 5000 # save last checkpoint per updates
|
|
|
1 |
hydra:
|
2 |
run:
|
3 |
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
4 |
+
|
5 |
datasets:
|
6 |
name: Emilia_ZH_EN
|
7 |
batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
|
8 |
+
batch_size_type: frame # "frame" or "sample"
|
9 |
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
10 |
num_workers: 16
|
11 |
|
12 |
optim:
|
13 |
+
epochs: 15
|
14 |
learning_rate: 7.5e-5
|
15 |
num_warmup_updates: 20000 # warmup updates
|
16 |
grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
|
|
|
20 |
model:
|
21 |
name: F5TTS_Small
|
22 |
tokenizer: pinyin
|
23 |
+
tokenizer_path: None # if tokenizer = 'custom', define the path to the tokenizer you want to use (should be vocab.txt)
|
|
|
24 |
arch:
|
25 |
dim: 768
|
26 |
depth: 18
|
27 |
heads: 12
|
28 |
ff_mult: 2
|
29 |
text_dim: 512
|
|
|
30 |
conv_layers: 4
|
|
|
31 |
checkpoint_activations: False # recompute activations and save memory for extra compute
|
32 |
mel_spec:
|
33 |
target_sample_rate: 24000
|
|
|
35 |
hop_length: 256
|
36 |
win_length: 1024
|
37 |
n_fft: 1024
|
38 |
+
mel_spec_type: vocos # 'vocos' or 'bigvgan'
|
39 |
vocoder:
|
40 |
is_local: False # use local offline ckpt or not
|
41 |
+
local_path: None # local vocoder path
|
42 |
|
43 |
ckpts:
|
44 |
+
logger: wandb # wandb | tensorboard | None
|
|
|
45 |
save_per_updates: 50000 # save checkpoint per updates
|
46 |
keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
|
47 |
last_per_updates: 5000 # save last checkpoint per updates
|
f5_tts/configs/F5TTS_v1_Base.yaml
DELETED
@@ -1,53 +0,0 @@
|
|
1 |
-
hydra:
|
2 |
-
run:
|
3 |
-
dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}/${now:%Y-%m-%d}/${now:%H-%M-%S}
|
4 |
-
|
5 |
-
datasets:
|
6 |
-
name: Emilia_ZH_EN # dataset name
|
7 |
-
batch_size_per_gpu: 38400 # 8 GPUs, 8 * 38400 = 307200
|
8 |
-
batch_size_type: frame # frame | sample
|
9 |
-
max_samples: 64 # max sequences per batch if use frame-wise batch_size. we set 32 for small models, 64 for base models
|
10 |
-
num_workers: 16
|
11 |
-
|
12 |
-
optim:
|
13 |
-
epochs: 11
|
14 |
-
learning_rate: 7.5e-5
|
15 |
-
num_warmup_updates: 20000 # warmup updates
|
16 |
-
grad_accumulation_steps: 1 # note: updates = steps / grad_accumulation_steps
|
17 |
-
max_grad_norm: 1.0 # gradient clipping
|
18 |
-
bnb_optimizer: False # use bnb 8bit AdamW optimizer or not
|
19 |
-
|
20 |
-
model:
|
21 |
-
name: F5TTS_v1_Base # model name
|
22 |
-
tokenizer: pinyin # tokenizer type
|
23 |
-
tokenizer_path: null # if 'custom' tokenizer, define the path want to use (should be vocab.txt)
|
24 |
-
backbone: DiT
|
25 |
-
arch:
|
26 |
-
dim: 1024
|
27 |
-
depth: 22
|
28 |
-
heads: 16
|
29 |
-
ff_mult: 2
|
30 |
-
text_dim: 512
|
31 |
-
text_mask_padding: True
|
32 |
-
qk_norm: null # null | rms_norm
|
33 |
-
conv_layers: 4
|
34 |
-
pe_attn_head: null
|
35 |
-
checkpoint_activations: False # recompute activations and save memory for extra compute
|
36 |
-
mel_spec:
|
37 |
-
target_sample_rate: 24000
|
38 |
-
n_mel_channels: 100
|
39 |
-
hop_length: 256
|
40 |
-
win_length: 1024
|
41 |
-
n_fft: 1024
|
42 |
-
mel_spec_type: vocos # vocos | bigvgan
|
43 |
-
vocoder:
|
44 |
-
is_local: False # use local offline ckpt or not
|
45 |
-
local_path: null # local vocoder path
|
46 |
-
|
47 |
-
ckpts:
|
48 |
-
logger: wandb # wandb | tensorboard | null
|
49 |
-
log_samples: True # infer random sample per save checkpoint. wip, normal to fail with extra long samples
|
50 |
-
save_per_updates: 50000 # save checkpoint per updates
|
51 |
-
keep_last_n_checkpoints: -1 # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
|
52 |
-
last_per_updates: 5000 # save last checkpoint per updates
|
53 |
-
save_dir: ckpts/${model.name}_${model.mel_spec.mel_spec_type}_${model.tokenizer}_${datasets.name}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f5_tts/eval/eval_infer_batch.py
CHANGED
@@ -10,7 +10,6 @@ from importlib.resources import files
|
|
10 |
import torch
|
11 |
import torchaudio
|
12 |
from accelerate import Accelerator
|
13 |
-
from omegaconf import OmegaConf
|
14 |
from tqdm import tqdm
|
15 |
|
16 |
from f5_tts.eval.utils_eval import (
|
@@ -19,26 +18,36 @@ from f5_tts.eval.utils_eval import (
|
|
19 |
get_seedtts_testset_metainfo,
|
20 |
)
|
21 |
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder
|
22 |
-
from f5_tts.model import CFM, DiT, UNetT
|
23 |
from f5_tts.model.utils import get_tokenizer
|
24 |
|
25 |
accelerator = Accelerator()
|
26 |
device = f"cuda:{accelerator.process_index}"
|
27 |
|
28 |
|
29 |
-
|
30 |
-
target_rms = 0.1
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
rel_path = str(files("f5_tts").joinpath("../../"))
|
34 |
|
35 |
|
36 |
def main():
|
|
|
|
|
37 |
parser = argparse.ArgumentParser(description="batch inference")
|
38 |
|
39 |
parser.add_argument("-s", "--seed", default=None, type=int)
|
|
|
40 |
parser.add_argument("-n", "--expname", required=True)
|
41 |
-
parser.add_argument("-c", "--ckptstep", default=
|
|
|
|
|
42 |
|
43 |
parser.add_argument("-nfe", "--nfestep", default=32, type=int)
|
44 |
parser.add_argument("-o", "--odemethod", default="euler")
|
@@ -49,8 +58,12 @@ def main():
|
|
49 |
args = parser.parse_args()
|
50 |
|
51 |
seed = args.seed
|
|
|
52 |
exp_name = args.expname
|
53 |
ckpt_step = args.ckptstep
|
|
|
|
|
|
|
54 |
|
55 |
nfe_step = args.nfestep
|
56 |
ode_method = args.odemethod
|
@@ -64,19 +77,13 @@ def main():
|
|
64 |
use_truth_duration = False
|
65 |
no_ref_audio = False
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
|
75 |
-
target_sample_rate = model_cfg.model.mel_spec.target_sample_rate
|
76 |
-
n_mel_channels = model_cfg.model.mel_spec.n_mel_channels
|
77 |
-
hop_length = model_cfg.model.mel_spec.hop_length
|
78 |
-
win_length = model_cfg.model.mel_spec.win_length
|
79 |
-
n_fft = model_cfg.model.mel_spec.n_fft
|
80 |
|
81 |
if testset == "ls_pc_test_clean":
|
82 |
metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
|
@@ -104,6 +111,8 @@ def main():
|
|
104 |
|
105 |
# -------------------------------------------------#
|
106 |
|
|
|
|
|
107 |
prompts_all = get_inference_prompt(
|
108 |
metainfo,
|
109 |
speed=speed,
|
@@ -130,7 +139,7 @@ def main():
|
|
130 |
|
131 |
# Model
|
132 |
model = CFM(
|
133 |
-
transformer=model_cls(**
|
134 |
mel_spec_kwargs=dict(
|
135 |
n_fft=n_fft,
|
136 |
hop_length=hop_length,
|
@@ -145,10 +154,6 @@ def main():
|
|
145 |
vocab_char_map=vocab_char_map,
|
146 |
).to(device)
|
147 |
|
148 |
-
ckpt_path = rel_path + f"/ckpts/{exp_name}/model_{ckpt_step}.pt"
|
149 |
-
if not os.path.exists(ckpt_path):
|
150 |
-
print("Loading from self-organized training checkpoints rather than released pretrained.")
|
151 |
-
ckpt_path = rel_path + f"/{model_cfg.ckpts.save_dir}/model_{ckpt_step}.pt"
|
152 |
dtype = torch.float32 if mel_spec_type == "bigvgan" else None
|
153 |
model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
|
154 |
|
|
|
10 |
import torch
|
11 |
import torchaudio
|
12 |
from accelerate import Accelerator
|
|
|
13 |
from tqdm import tqdm
|
14 |
|
15 |
from f5_tts.eval.utils_eval import (
|
|
|
18 |
get_seedtts_testset_metainfo,
|
19 |
)
|
20 |
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder
|
21 |
+
from f5_tts.model import CFM, DiT, UNetT
|
22 |
from f5_tts.model.utils import get_tokenizer
|
23 |
|
24 |
accelerator = Accelerator()
|
25 |
device = f"cuda:{accelerator.process_index}"
|
26 |
|
27 |
|
28 |
+
# --------------------- Dataset Settings -------------------- #
|
|
|
29 |
|
30 |
+
target_sample_rate = 24000
|
31 |
+
n_mel_channels = 100
|
32 |
+
hop_length = 256
|
33 |
+
win_length = 1024
|
34 |
+
n_fft = 1024
|
35 |
+
target_rms = 0.1
|
36 |
|
37 |
rel_path = str(files("f5_tts").joinpath("../../"))
|
38 |
|
39 |
|
40 |
def main():
|
41 |
+
# ---------------------- infer setting ---------------------- #
|
42 |
+
|
43 |
parser = argparse.ArgumentParser(description="batch inference")
|
44 |
|
45 |
parser.add_argument("-s", "--seed", default=None, type=int)
|
46 |
+
parser.add_argument("-d", "--dataset", default="Emilia_ZH_EN")
|
47 |
parser.add_argument("-n", "--expname", required=True)
|
48 |
+
parser.add_argument("-c", "--ckptstep", default=1200000, type=int)
|
49 |
+
parser.add_argument("-m", "--mel_spec_type", default="vocos", type=str, choices=["bigvgan", "vocos"])
|
50 |
+
parser.add_argument("-to", "--tokenizer", default="pinyin", type=str, choices=["pinyin", "char"])
|
51 |
|
52 |
parser.add_argument("-nfe", "--nfestep", default=32, type=int)
|
53 |
parser.add_argument("-o", "--odemethod", default="euler")
|
|
|
58 |
args = parser.parse_args()
|
59 |
|
60 |
seed = args.seed
|
61 |
+
dataset_name = args.dataset
|
62 |
exp_name = args.expname
|
63 |
ckpt_step = args.ckptstep
|
64 |
+
ckpt_path = rel_path + f"/ckpts/{exp_name}/model_{ckpt_step}.pt"
|
65 |
+
mel_spec_type = args.mel_spec_type
|
66 |
+
tokenizer = args.tokenizer
|
67 |
|
68 |
nfe_step = args.nfestep
|
69 |
ode_method = args.odemethod
|
|
|
77 |
use_truth_duration = False
|
78 |
no_ref_audio = False
|
79 |
|
80 |
+
if exp_name == "F5TTS_Base":
|
81 |
+
model_cls = DiT
|
82 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
83 |
|
84 |
+
elif exp_name == "E2TTS_Base":
|
85 |
+
model_cls = UNetT
|
86 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
if testset == "ls_pc_test_clean":
|
89 |
metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst"
|
|
|
111 |
|
112 |
# -------------------------------------------------#
|
113 |
|
114 |
+
use_ema = True
|
115 |
+
|
116 |
prompts_all = get_inference_prompt(
|
117 |
metainfo,
|
118 |
speed=speed,
|
|
|
139 |
|
140 |
# Model
|
141 |
model = CFM(
|
142 |
+
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
143 |
mel_spec_kwargs=dict(
|
144 |
n_fft=n_fft,
|
145 |
hop_length=hop_length,
|
|
|
154 |
vocab_char_map=vocab_char_map,
|
155 |
).to(device)
|
156 |
|
|
|
|
|
|
|
|
|
157 |
dtype = torch.float32 if mel_spec_type == "bigvgan" else None
|
158 |
model = load_checkpoint(model, ckpt_path, device, dtype=dtype, use_ema=use_ema)
|
159 |
|
f5_tts/eval/eval_infer_batch.sh
CHANGED
@@ -1,18 +1,13 @@
|
|
1 |
#!/bin/bash
|
2 |
|
3 |
# e.g. F5-TTS, 16 NFE
|
4 |
-
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "
|
5 |
-
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "
|
6 |
-
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "
|
7 |
|
8 |
# e.g. Vanilla E2 TTS, 32 NFE
|
9 |
-
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -
|
10 |
-
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -
|
11 |
-
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -
|
12 |
-
|
13 |
-
# e.g. evaluate F5-TTS 16 NFE result on Seed-TTS test-zh
|
14 |
-
python src/f5_tts/eval/eval_seedtts_testset.py -e wer -l zh --gen_wav_dir results/F5TTS_v1_Base_1250000/seedtts_test_zh/seed0_euler_nfe32_vocos_ss-1_cfg2.0_speed1.0 --gpu_nums 8
|
15 |
-
python src/f5_tts/eval/eval_seedtts_testset.py -e sim -l zh --gen_wav_dir results/F5TTS_v1_Base_1250000/seedtts_test_zh/seed0_euler_nfe32_vocos_ss-1_cfg2.0_speed1.0 --gpu_nums 8
|
16 |
-
python src/f5_tts/eval/eval_utmos.py --audio_dir results/F5TTS_v1_Base_1250000/seedtts_test_zh/seed0_euler_nfe32_vocos_ss-1_cfg2.0_speed1.0
|
17 |
|
18 |
# etc.
|
|
|
1 |
#!/bin/bash
|
2 |
|
3 |
# e.g. F5-TTS, 16 NFE
|
4 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "seedtts_test_zh" -nfe 16
|
5 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "seedtts_test_en" -nfe 16
|
6 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "F5TTS_Base" -t "ls_pc_test_clean" -nfe 16
|
7 |
|
8 |
# e.g. Vanilla E2 TTS, 32 NFE
|
9 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "seedtts_test_zh" -o "midpoint" -ss 0
|
10 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "seedtts_test_en" -o "midpoint" -ss 0
|
11 |
+
accelerate launch src/f5_tts/eval/eval_infer_batch.py -s 0 -n "E2TTS_Base" -t "ls_pc_test_clean" -o "midpoint" -ss 0
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# etc.
|
f5_tts/eval/eval_librispeech_test_clean.py
CHANGED
@@ -53,37 +53,43 @@ def main():
|
|
53 |
asr_ckpt_dir = "" # auto download to cache dir
|
54 |
wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth"
|
55 |
|
56 |
-
#
|
57 |
-
|
58 |
-
full_results = []
|
59 |
-
metrics = []
|
60 |
|
61 |
if eval_task == "wer":
|
|
|
|
|
|
|
62 |
with mp.Pool(processes=len(gpus)) as pool:
|
63 |
args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set]
|
64 |
results = pool.map(run_asr_wer, args)
|
65 |
for r in results:
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
with mp.Pool(processes=len(gpus)) as pool:
|
69 |
args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set]
|
70 |
results = pool.map(run_sim, args)
|
71 |
for r in results:
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
with open(result_path, "w") as f:
|
78 |
-
for line in full_results:
|
79 |
-
metrics.append(line[eval_task])
|
80 |
-
f.write(json.dumps(line, ensure_ascii=False) + "\n")
|
81 |
-
metric = round(np.mean(metrics), 5)
|
82 |
-
f.write(f"\n{eval_task.upper()}: {metric}\n")
|
83 |
-
|
84 |
-
print(f"\nTotal {len(metrics)} samples")
|
85 |
-
print(f"{eval_task.upper()}: {metric}")
|
86 |
-
print(f"{eval_task.upper()} results saved to {result_path}")
|
87 |
|
88 |
|
89 |
if __name__ == "__main__":
|
|
|
53 |
asr_ckpt_dir = "" # auto download to cache dir
|
54 |
wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth"
|
55 |
|
56 |
+
# --------------------------- WER ---------------------------
|
|
|
|
|
|
|
57 |
|
58 |
if eval_task == "wer":
|
59 |
+
wer_results = []
|
60 |
+
wers = []
|
61 |
+
|
62 |
with mp.Pool(processes=len(gpus)) as pool:
|
63 |
args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set]
|
64 |
results = pool.map(run_asr_wer, args)
|
65 |
for r in results:
|
66 |
+
wer_results.extend(r)
|
67 |
+
|
68 |
+
wer_result_path = f"{gen_wav_dir}/{lang}_wer_results.jsonl"
|
69 |
+
with open(wer_result_path, "w") as f:
|
70 |
+
for line in wer_results:
|
71 |
+
wers.append(line["wer"])
|
72 |
+
json_line = json.dumps(line, ensure_ascii=False)
|
73 |
+
f.write(json_line + "\n")
|
74 |
+
|
75 |
+
wer = round(np.mean(wers) * 100, 3)
|
76 |
+
print(f"\nTotal {len(wers)} samples")
|
77 |
+
print(f"WER : {wer}%")
|
78 |
+
print(f"Results have been saved to {wer_result_path}")
|
79 |
+
|
80 |
+
# --------------------------- SIM ---------------------------
|
81 |
+
|
82 |
+
if eval_task == "sim":
|
83 |
+
sims = []
|
84 |
with mp.Pool(processes=len(gpus)) as pool:
|
85 |
args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set]
|
86 |
results = pool.map(run_sim, args)
|
87 |
for r in results:
|
88 |
+
sims.extend(r)
|
89 |
+
|
90 |
+
sim = round(sum(sims) / len(sims), 3)
|
91 |
+
print(f"\nTotal {len(sims)} samples")
|
92 |
+
print(f"SIM : {sim}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
|
95 |
if __name__ == "__main__":
|
f5_tts/eval/eval_seedtts_testset.py
CHANGED
@@ -52,37 +52,43 @@ def main():
|
|
52 |
asr_ckpt_dir = "" # auto download to cache dir
|
53 |
wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth"
|
54 |
|
55 |
-
#
|
56 |
-
|
57 |
-
full_results = []
|
58 |
-
metrics = []
|
59 |
|
60 |
if eval_task == "wer":
|
|
|
|
|
|
|
61 |
with mp.Pool(processes=len(gpus)) as pool:
|
62 |
args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set]
|
63 |
results = pool.map(run_asr_wer, args)
|
64 |
for r in results:
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
with mp.Pool(processes=len(gpus)) as pool:
|
68 |
args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set]
|
69 |
results = pool.map(run_sim, args)
|
70 |
for r in results:
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
with open(result_path, "w") as f:
|
77 |
-
for line in full_results:
|
78 |
-
metrics.append(line[eval_task])
|
79 |
-
f.write(json.dumps(line, ensure_ascii=False) + "\n")
|
80 |
-
metric = round(np.mean(metrics), 5)
|
81 |
-
f.write(f"\n{eval_task.upper()}: {metric}\n")
|
82 |
-
|
83 |
-
print(f"\nTotal {len(metrics)} samples")
|
84 |
-
print(f"{eval_task.upper()}: {metric}")
|
85 |
-
print(f"{eval_task.upper()} results saved to {result_path}")
|
86 |
|
87 |
|
88 |
if __name__ == "__main__":
|
|
|
52 |
asr_ckpt_dir = "" # auto download to cache dir
|
53 |
wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth"
|
54 |
|
55 |
+
# --------------------------- WER ---------------------------
|
|
|
|
|
|
|
56 |
|
57 |
if eval_task == "wer":
|
58 |
+
wer_results = []
|
59 |
+
wers = []
|
60 |
+
|
61 |
with mp.Pool(processes=len(gpus)) as pool:
|
62 |
args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set]
|
63 |
results = pool.map(run_asr_wer, args)
|
64 |
for r in results:
|
65 |
+
wer_results.extend(r)
|
66 |
+
|
67 |
+
wer_result_path = f"{gen_wav_dir}/{lang}_wer_results.jsonl"
|
68 |
+
with open(wer_result_path, "w") as f:
|
69 |
+
for line in wer_results:
|
70 |
+
wers.append(line["wer"])
|
71 |
+
json_line = json.dumps(line, ensure_ascii=False)
|
72 |
+
f.write(json_line + "\n")
|
73 |
+
|
74 |
+
wer = round(np.mean(wers) * 100, 3)
|
75 |
+
print(f"\nTotal {len(wers)} samples")
|
76 |
+
print(f"WER : {wer}%")
|
77 |
+
print(f"Results have been saved to {wer_result_path}")
|
78 |
+
|
79 |
+
# --------------------------- SIM ---------------------------
|
80 |
+
|
81 |
+
if eval_task == "sim":
|
82 |
+
sims = []
|
83 |
with mp.Pool(processes=len(gpus)) as pool:
|
84 |
args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set]
|
85 |
results = pool.map(run_sim, args)
|
86 |
for r in results:
|
87 |
+
sims.extend(r)
|
88 |
+
|
89 |
+
sim = round(sum(sims) / len(sims), 3)
|
90 |
+
print(f"\nTotal {len(sims)} samples")
|
91 |
+
print(f"SIM : {sim}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
|
94 |
if __name__ == "__main__":
|
f5_tts/eval/eval_utmos.py
CHANGED
@@ -19,23 +19,25 @@ def main():
|
|
19 |
predictor = predictor.to(device)
|
20 |
|
21 |
audio_paths = list(Path(args.audio_dir).rglob(f"*.{args.ext}"))
|
|
|
22 |
utmos_score = 0
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
with open(utmos_result_path, "w", encoding="utf-8") as f:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
score = predictor(wav_tensor, sr)
|
30 |
-
line = {}
|
31 |
-
line["wav"], line["utmos"] = str(audio_path.stem), score.item()
|
32 |
-
utmos_score += score.item()
|
33 |
-
f.write(json.dumps(line, ensure_ascii=False) + "\n")
|
34 |
-
avg_score = utmos_score / len(audio_paths) if len(audio_paths) > 0 else 0
|
35 |
-
f.write(f"\nUTMOS: {avg_score:.4f}\n")
|
36 |
-
|
37 |
-
print(f"UTMOS: {avg_score:.4f}")
|
38 |
-
print(f"UTMOS results saved to {utmos_result_path}")
|
39 |
|
40 |
|
41 |
if __name__ == "__main__":
|
|
|
19 |
predictor = predictor.to(device)
|
20 |
|
21 |
audio_paths = list(Path(args.audio_dir).rglob(f"*.{args.ext}"))
|
22 |
+
utmos_results = {}
|
23 |
utmos_score = 0
|
24 |
|
25 |
+
for audio_path in tqdm(audio_paths, desc="Processing"):
|
26 |
+
wav_name = audio_path.stem
|
27 |
+
wav, sr = librosa.load(audio_path, sr=None, mono=True)
|
28 |
+
wav_tensor = torch.from_numpy(wav).to(device).unsqueeze(0)
|
29 |
+
score = predictor(wav_tensor, sr)
|
30 |
+
utmos_results[str(wav_name)] = score.item()
|
31 |
+
utmos_score += score.item()
|
32 |
+
|
33 |
+
avg_score = utmos_score / len(audio_paths) if len(audio_paths) > 0 else 0
|
34 |
+
print(f"UTMOS: {avg_score}")
|
35 |
+
|
36 |
+
utmos_result_path = Path(args.audio_dir) / "utmos_results.json"
|
37 |
with open(utmos_result_path, "w", encoding="utf-8") as f:
|
38 |
+
json.dump(utmos_results, f, ensure_ascii=False, indent=4)
|
39 |
+
|
40 |
+
print(f"Results have been saved to {utmos_result_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
|
43 |
if __name__ == "__main__":
|
f5_tts/eval/utils_eval.py
CHANGED
@@ -389,10 +389,10 @@ def run_sim(args):
|
|
389 |
model = model.cuda(device)
|
390 |
model.eval()
|
391 |
|
392 |
-
|
393 |
-
for
|
394 |
-
wav1, sr1 = torchaudio.load(
|
395 |
-
wav2, sr2 = torchaudio.load(
|
396 |
|
397 |
resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000)
|
398 |
resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000)
|
@@ -408,11 +408,6 @@ def run_sim(args):
|
|
408 |
|
409 |
sim = F.cosine_similarity(emb1, emb2)[0].item()
|
410 |
# print(f"VSim score between two audios: {sim:.4f} (-1.0, 1.0).")
|
411 |
-
|
412 |
-
{
|
413 |
-
"wav": Path(gen_wav).stem,
|
414 |
-
"sim": sim,
|
415 |
-
}
|
416 |
-
)
|
417 |
|
418 |
-
return
|
|
|
389 |
model = model.cuda(device)
|
390 |
model.eval()
|
391 |
|
392 |
+
sims = []
|
393 |
+
for wav1, wav2, truth in tqdm(test_set):
|
394 |
+
wav1, sr1 = torchaudio.load(wav1)
|
395 |
+
wav2, sr2 = torchaudio.load(wav2)
|
396 |
|
397 |
resample1 = torchaudio.transforms.Resample(orig_freq=sr1, new_freq=16000)
|
398 |
resample2 = torchaudio.transforms.Resample(orig_freq=sr2, new_freq=16000)
|
|
|
408 |
|
409 |
sim = F.cosine_similarity(emb1, emb2)[0].item()
|
410 |
# print(f"VSim score between two audios: {sim:.4f} (-1.0, 1.0).")
|
411 |
+
sims.append(sim)
|
|
|
|
|
|
|
|
|
|
|
412 |
|
413 |
+
return sims
|
f5_tts/infer/README.md
CHANGED
@@ -23,24 +23,12 @@ Currently supported features:
|
|
23 |
- Basic TTS with Chunk Inference
|
24 |
- Multi-Style / Multi-Speaker Generation
|
25 |
- Voice Chat powered by Qwen2.5-3B-Instruct
|
26 |
-
- [Custom inference with more language support](src/f5_tts/infer/SHARED.md)
|
27 |
|
28 |
The cli command `f5-tts_infer-gradio` equals to `python src/f5_tts/infer/infer_gradio.py`, which launches a Gradio APP (web interface) for inference.
|
29 |
|
30 |
The script will load model checkpoints from Huggingface. You can also manually download files and update the path to `load_model()` in `infer_gradio.py`. Currently only load TTS models first, will load ASR model to do transcription if `ref_text` not provided, will load LLM model if use Voice Chat.
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
```bash
|
35 |
-
# Automatically launch the interface in the default web browser
|
36 |
-
f5-tts_infer-gradio --inbrowser
|
37 |
-
|
38 |
-
# Set the root path of the application, if it's not served from the root ("/") of the domain
|
39 |
-
# For example, if the application is served at "https://example.com/myapp"
|
40 |
-
f5-tts_infer-gradio --root_path "/myapp"
|
41 |
-
```
|
42 |
-
|
43 |
-
Could also be used as a component for larger application:
|
44 |
```python
|
45 |
import gradio as gr
|
46 |
from f5_tts.infer.infer_gradio import app
|
@@ -68,16 +56,17 @@ Basically you can inference with flags:
|
|
68 |
```bash
|
69 |
# Leave --ref_text "" will have ASR model transcribe (extra GPU memory usage)
|
70 |
f5-tts_infer-cli \
|
71 |
-
--model
|
72 |
--ref_audio "ref_audio.wav" \
|
73 |
-
--ref_text "
|
74 |
-
--gen_text "
|
|
|
|
|
|
|
75 |
|
76 |
-
#
|
77 |
-
f5-tts_infer-cli --
|
78 |
-
|
79 |
-
# Use custom path checkpoint, e.g.
|
80 |
-
f5-tts_infer-cli --ckpt_file ckpts/F5TTS_v1_Base/model_1250000.safetensors
|
81 |
|
82 |
# More instructions
|
83 |
f5-tts_infer-cli --help
|
@@ -92,8 +81,8 @@ f5-tts_infer-cli -c custom.toml
|
|
92 |
For example, you can use `.toml` to pass in variables, refer to `src/f5_tts/infer/examples/basic/basic.toml`:
|
93 |
|
94 |
```toml
|
95 |
-
#
|
96 |
-
model = "
|
97 |
ref_audio = "infer/examples/basic/basic_ref_en.wav"
|
98 |
# If an empty "", transcribes the reference audio automatically.
|
99 |
ref_text = "Some call me nature, others call me mother nature."
|
@@ -107,8 +96,8 @@ output_dir = "tests"
|
|
107 |
You can also leverage `.toml` file to do multi-style generation, refer to `src/f5_tts/infer/examples/multi/story.toml`.
|
108 |
|
109 |
```toml
|
110 |
-
#
|
111 |
-
model = "
|
112 |
ref_audio = "infer/examples/multi/main.flac"
|
113 |
# If an empty "", transcribes the reference audio automatically.
|
114 |
ref_text = ""
|
@@ -128,27 +117,83 @@ ref_text = ""
|
|
128 |
```
|
129 |
You should mark the voice with `[main]` `[town]` `[country]` whenever you want to change voice, refer to `src/f5_tts/infer/examples/multi/story.txt`.
|
130 |
|
131 |
-
##
|
132 |
|
133 |
-
|
134 |
|
135 |
```bash
|
136 |
-
|
137 |
-
python src/f5_tts/socket_server.py
|
138 |
-
|
139 |
-
# If PyAudio not installed
|
140 |
-
sudo apt-get install portaudio19-dev
|
141 |
-
pip install pyaudio
|
142 |
-
|
143 |
-
# Communicate with socket client
|
144 |
-
python src/f5_tts/socket_client.py
|
145 |
```
|
146 |
|
147 |
-
##
|
148 |
-
|
149 |
-
To test speech editing capabilities, use the following command:
|
150 |
|
|
|
151 |
```bash
|
152 |
-
python src/f5_tts/
|
153 |
```
|
154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
- Basic TTS with Chunk Inference
|
24 |
- Multi-Style / Multi-Speaker Generation
|
25 |
- Voice Chat powered by Qwen2.5-3B-Instruct
|
|
|
26 |
|
27 |
The cli command `f5-tts_infer-gradio` equals to `python src/f5_tts/infer/infer_gradio.py`, which launches a Gradio APP (web interface) for inference.
|
28 |
|
29 |
The script will load model checkpoints from Huggingface. You can also manually download files and update the path to `load_model()` in `infer_gradio.py`. Currently only load TTS models first, will load ASR model to do transcription if `ref_text` not provided, will load LLM model if use Voice Chat.
|
30 |
|
31 |
+
Could also be used as a component for larger application.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
```python
|
33 |
import gradio as gr
|
34 |
from f5_tts.infer.infer_gradio import app
|
|
|
56 |
```bash
|
57 |
# Leave --ref_text "" will have ASR model transcribe (extra GPU memory usage)
|
58 |
f5-tts_infer-cli \
|
59 |
+
--model "F5-TTS" \
|
60 |
--ref_audio "ref_audio.wav" \
|
61 |
+
--ref_text "hình ảnh cực đoan trong em_vi của sơn tùng mờ thành phố bị khán giả chỉ trích" \
|
62 |
+
--gen_text "tôi yêu em đến nay chừng có thể, ngọn lửa tình chưa hẳn đã tàn phai." \
|
63 |
+
--vocoder_name vocos \
|
64 |
+
--load_vocoder_from_local \
|
65 |
+
--ckpt_file ckpts/F5TTS_Base_vocos_char_vnTTS/model_last.pt
|
66 |
|
67 |
+
# Choose Vocoder
|
68 |
+
f5-tts_infer-cli --vocoder_name bigvgan --load_vocoder_from_local --ckpt_file <YOUR_CKPT_PATH, eg:ckpts/F5TTS_Base_bigvgan/model_1250000.pt>
|
69 |
+
f5-tts_infer-cli --vocoder_name vocos --load_vocoder_from_local --ckpt_file <YOUR_CKPT_PATH, eg:ckpts/F5TTS_Base/model_1200000.safetensors>
|
|
|
|
|
70 |
|
71 |
# More instructions
|
72 |
f5-tts_infer-cli --help
|
|
|
81 |
For example, you can use `.toml` to pass in variables, refer to `src/f5_tts/infer/examples/basic/basic.toml`:
|
82 |
|
83 |
```toml
|
84 |
+
# F5-TTS | E2-TTS
|
85 |
+
model = "F5-TTS"
|
86 |
ref_audio = "infer/examples/basic/basic_ref_en.wav"
|
87 |
# If an empty "", transcribes the reference audio automatically.
|
88 |
ref_text = "Some call me nature, others call me mother nature."
|
|
|
96 |
You can also leverage `.toml` file to do multi-style generation, refer to `src/f5_tts/infer/examples/multi/story.toml`.
|
97 |
|
98 |
```toml
|
99 |
+
# F5-TTS | E2-TTS
|
100 |
+
model = "F5-TTS"
|
101 |
ref_audio = "infer/examples/multi/main.flac"
|
102 |
# If an empty "", transcribes the reference audio automatically.
|
103 |
ref_text = ""
|
|
|
117 |
```
|
118 |
You should mark the voice with `[main]` `[town]` `[country]` whenever you want to change voice, refer to `src/f5_tts/infer/examples/multi/story.txt`.
|
119 |
|
120 |
+
## Speech Editing
|
121 |
|
122 |
+
To test speech editing capabilities, use the following command:
|
123 |
|
124 |
```bash
|
125 |
+
python src/f5_tts/infer/speech_edit.py
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
```
|
127 |
|
128 |
+
## Socket Realtime Client
|
|
|
|
|
129 |
|
130 |
+
To communicate with socket server you need to run
|
131 |
```bash
|
132 |
+
python src/f5_tts/socket_server.py
|
133 |
```
|
134 |
|
135 |
+
<details>
|
136 |
+
<summary>Then create client to communicate</summary>
|
137 |
+
|
138 |
+
``` python
|
139 |
+
import socket
|
140 |
+
import numpy as np
|
141 |
+
import asyncio
|
142 |
+
import pyaudio
|
143 |
+
|
144 |
+
async def listen_to_voice(text, server_ip='localhost', server_port=9999):
|
145 |
+
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
146 |
+
client_socket.connect((server_ip, server_port))
|
147 |
+
|
148 |
+
async def play_audio_stream():
|
149 |
+
buffer = b''
|
150 |
+
p = pyaudio.PyAudio()
|
151 |
+
stream = p.open(format=pyaudio.paFloat32,
|
152 |
+
channels=1,
|
153 |
+
rate=24000, # Ensure this matches the server's sampling rate
|
154 |
+
output=True,
|
155 |
+
frames_per_buffer=2048)
|
156 |
+
|
157 |
+
try:
|
158 |
+
while True:
|
159 |
+
chunk = await asyncio.get_event_loop().run_in_executor(None, client_socket.recv, 1024)
|
160 |
+
if not chunk: # End of stream
|
161 |
+
break
|
162 |
+
if b"END_OF_AUDIO" in chunk:
|
163 |
+
buffer += chunk.replace(b"END_OF_AUDIO", b"")
|
164 |
+
if buffer:
|
165 |
+
audio_array = np.frombuffer(buffer, dtype=np.float32).copy() # Make a writable copy
|
166 |
+
stream.write(audio_array.tobytes())
|
167 |
+
break
|
168 |
+
buffer += chunk
|
169 |
+
if len(buffer) >= 4096:
|
170 |
+
audio_array = np.frombuffer(buffer[:4096], dtype=np.float32).copy() # Make a writable copy
|
171 |
+
stream.write(audio_array.tobytes())
|
172 |
+
buffer = buffer[4096:]
|
173 |
+
finally:
|
174 |
+
stream.stop_stream()
|
175 |
+
stream.close()
|
176 |
+
p.terminate()
|
177 |
+
|
178 |
+
try:
|
179 |
+
# Send only the text to the server
|
180 |
+
await asyncio.get_event_loop().run_in_executor(None, client_socket.sendall, text.encode('utf-8'))
|
181 |
+
await play_audio_stream()
|
182 |
+
print("Audio playback finished.")
|
183 |
+
|
184 |
+
except Exception as e:
|
185 |
+
print(f"Error in listen_to_voice: {e}")
|
186 |
+
|
187 |
+
finally:
|
188 |
+
client_socket.close()
|
189 |
+
|
190 |
+
# Example usage: Replace this with your actual server IP and port
|
191 |
+
async def main():
|
192 |
+
await listen_to_voice("my name is jenny..", server_ip='localhost', server_port=9998)
|
193 |
+
|
194 |
+
# Run the main async function
|
195 |
+
asyncio.run(main())
|
196 |
+
```
|
197 |
+
|
198 |
+
</details>
|
199 |
+
|
f5_tts/infer/SHARED.md
CHANGED
@@ -16,7 +16,7 @@
|
|
16 |
<!-- omit in toc -->
|
17 |
### Supported Languages
|
18 |
- [Multilingual](#multilingual)
|
19 |
-
- [F5-TTS
|
20 |
- [English](#english)
|
21 |
- [Finnish](#finnish)
|
22 |
- [F5-TTS Base @ fi @ AsmoKoskinen](#f5-tts-base--fi--asmokoskinen)
|
@@ -37,17 +37,7 @@
|
|
37 |
|
38 |
## Multilingual
|
39 |
|
40 |
-
#### F5-TTS
|
41 |
-
|Model|🤗Hugging Face|Data (Hours)|Model License|
|
42 |
-
|:---:|:------------:|:-----------:|:-------------:|
|
43 |
-
|F5-TTS v1 Base|[ckpt & vocab](https://huggingface.co/SWivid/F5-TTS/tree/main/F5TTS_v1_Base)|[Emilia 95K zh&en](https://huggingface.co/datasets/amphion/Emilia-Dataset/tree/fc71e07)|cc-by-nc-4.0|
|
44 |
-
|
45 |
-
```bash
|
46 |
-
Model: hf://SWivid/F5-TTS/F5TTS_v1_Base/model_1250000.safetensors
|
47 |
-
Vocab: hf://SWivid/F5-TTS/F5TTS_v1_Base/vocab.txt
|
48 |
-
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
|
49 |
-
```
|
50 |
-
|
51 |
|Model|🤗Hugging Face|Data (Hours)|Model License|
|
52 |
|:---:|:------------:|:-----------:|:-------------:|
|
53 |
|F5-TTS Base|[ckpt & vocab](https://huggingface.co/SWivid/F5-TTS/tree/main/F5TTS_Base)|[Emilia 95K zh&en](https://huggingface.co/datasets/amphion/Emilia-Dataset/tree/fc71e07)|cc-by-nc-4.0|
|
@@ -55,7 +45,7 @@ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
|
55 |
```bash
|
56 |
Model: hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors
|
57 |
Vocab: hf://SWivid/F5-TTS/F5TTS_Base/vocab.txt
|
58 |
-
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
59 |
```
|
60 |
|
61 |
*Other infos, e.g. Author info, Github repo, Link to some sampled results, Usage instruction, Tutorial (Blog, Video, etc.) ...*
|
@@ -74,7 +64,7 @@ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
|
74 |
```bash
|
75 |
Model: hf://AsmoKoskinen/F5-TTS_Finnish_Model/model_common_voice_fi_vox_populi_fi_20241206.safetensors
|
76 |
Vocab: hf://AsmoKoskinen/F5-TTS_Finnish_Model/vocab.txt
|
77 |
-
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
78 |
```
|
79 |
|
80 |
|
@@ -88,7 +78,7 @@ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
|
88 |
```bash
|
89 |
Model: hf://RASPIAUDIO/F5-French-MixedSpeakers-reduced/model_last_reduced.pt
|
90 |
Vocab: hf://RASPIAUDIO/F5-French-MixedSpeakers-reduced/vocab.txt
|
91 |
-
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
92 |
```
|
93 |
|
94 |
- [Online Inference with Hugging Face Space](https://huggingface.co/spaces/RASPIAUDIO/f5-tts_french).
|
@@ -106,7 +96,7 @@ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
|
106 |
```bash
|
107 |
Model: hf://SPRINGLab/F5-Hindi-24KHz/model_2500000.safetensors
|
108 |
Vocab: hf://SPRINGLab/F5-Hindi-24KHz/vocab.txt
|
109 |
-
Config: {"dim": 768, "depth": 18, "heads": 12, "ff_mult": 2, "text_dim": 512, "
|
110 |
```
|
111 |
|
112 |
- Authors: SPRING Lab, Indian Institute of Technology, Madras
|
@@ -123,7 +113,7 @@ Config: {"dim": 768, "depth": 18, "heads": 12, "ff_mult": 2, "text_dim": 512, "t
|
|
123 |
```bash
|
124 |
Model: hf://alien79/F5-TTS-italian/model_159600.safetensors
|
125 |
Vocab: hf://alien79/F5-TTS-italian/vocab.txt
|
126 |
-
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
127 |
```
|
128 |
|
129 |
- Trained by [Mithril Man](https://github.com/MithrilMan)
|
@@ -141,7 +131,7 @@ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
|
141 |
```bash
|
142 |
Model: hf://Jmica/F5TTS/JA_25498980/model_25498980.pt
|
143 |
Vocab: hf://Jmica/F5TTS/JA_25498980/vocab_updated.txt
|
144 |
-
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
145 |
```
|
146 |
|
147 |
|
@@ -158,7 +148,7 @@ Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
|
158 |
```bash
|
159 |
Model: hf://hotstone228/F5-TTS-Russian/model_last.safetensors
|
160 |
Vocab: hf://hotstone228/F5-TTS-Russian/vocab.txt
|
161 |
-
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "
|
162 |
```
|
163 |
- Finetuned by [HotDro4illa](https://github.com/HotDro4illa)
|
164 |
- Any improvements are welcome
|
|
|
16 |
<!-- omit in toc -->
|
17 |
### Supported Languages
|
18 |
- [Multilingual](#multilingual)
|
19 |
+
- [F5-TTS Base @ zh \& en @ F5-TTS](#f5-tts-base--zh--en--f5-tts)
|
20 |
- [English](#english)
|
21 |
- [Finnish](#finnish)
|
22 |
- [F5-TTS Base @ fi @ AsmoKoskinen](#f5-tts-base--fi--asmokoskinen)
|
|
|
37 |
|
38 |
## Multilingual
|
39 |
|
40 |
+
#### F5-TTS Base @ zh & en @ F5-TTS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|Model|🤗Hugging Face|Data (Hours)|Model License|
|
42 |
|:---:|:------------:|:-----------:|:-------------:|
|
43 |
|F5-TTS Base|[ckpt & vocab](https://huggingface.co/SWivid/F5-TTS/tree/main/F5TTS_Base)|[Emilia 95K zh&en](https://huggingface.co/datasets/amphion/Emilia-Dataset/tree/fc71e07)|cc-by-nc-4.0|
|
|
|
45 |
```bash
|
46 |
Model: hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors
|
47 |
Vocab: hf://SWivid/F5-TTS/F5TTS_Base/vocab.txt
|
48 |
+
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
|
49 |
```
|
50 |
|
51 |
*Other infos, e.g. Author info, Github repo, Link to some sampled results, Usage instruction, Tutorial (Blog, Video, etc.) ...*
|
|
|
64 |
```bash
|
65 |
Model: hf://AsmoKoskinen/F5-TTS_Finnish_Model/model_common_voice_fi_vox_populi_fi_20241206.safetensors
|
66 |
Vocab: hf://AsmoKoskinen/F5-TTS_Finnish_Model/vocab.txt
|
67 |
+
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
|
68 |
```
|
69 |
|
70 |
|
|
|
78 |
```bash
|
79 |
Model: hf://RASPIAUDIO/F5-French-MixedSpeakers-reduced/model_last_reduced.pt
|
80 |
Vocab: hf://RASPIAUDIO/F5-French-MixedSpeakers-reduced/vocab.txt
|
81 |
+
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
|
82 |
```
|
83 |
|
84 |
- [Online Inference with Hugging Face Space](https://huggingface.co/spaces/RASPIAUDIO/f5-tts_french).
|
|
|
96 |
```bash
|
97 |
Model: hf://SPRINGLab/F5-Hindi-24KHz/model_2500000.safetensors
|
98 |
Vocab: hf://SPRINGLab/F5-Hindi-24KHz/vocab.txt
|
99 |
+
Config: {"dim": 768, "depth": 18, "heads": 12, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
|
100 |
```
|
101 |
|
102 |
- Authors: SPRING Lab, Indian Institute of Technology, Madras
|
|
|
113 |
```bash
|
114 |
Model: hf://alien79/F5-TTS-italian/model_159600.safetensors
|
115 |
Vocab: hf://alien79/F5-TTS-italian/vocab.txt
|
116 |
+
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
|
117 |
```
|
118 |
|
119 |
- Trained by [Mithril Man](https://github.com/MithrilMan)
|
|
|
131 |
```bash
|
132 |
Model: hf://Jmica/F5TTS/JA_25498980/model_25498980.pt
|
133 |
Vocab: hf://Jmica/F5TTS/JA_25498980/vocab_updated.txt
|
134 |
+
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
|
135 |
```
|
136 |
|
137 |
|
|
|
148 |
```bash
|
149 |
Model: hf://hotstone228/F5-TTS-Russian/model_last.safetensors
|
150 |
Vocab: hf://hotstone228/F5-TTS-Russian/vocab.txt
|
151 |
+
Config: {"dim": 1024, "depth": 22, "heads": 16, "ff_mult": 2, "text_dim": 512, "conv_layers": 4}
|
152 |
```
|
153 |
- Finetuned by [HotDro4illa](https://github.com/HotDro4illa)
|
154 |
- Any improvements are welcome
|
f5_tts/infer/__pycache__/infer_cli.cpython-310.pyc
CHANGED
Binary files a/f5_tts/infer/__pycache__/infer_cli.cpython-310.pyc and b/f5_tts/infer/__pycache__/infer_cli.cpython-310.pyc differ
|
|
f5_tts/infer/__pycache__/utils_infer.cpython-310.pyc
CHANGED
Binary files a/f5_tts/infer/__pycache__/utils_infer.cpython-310.pyc and b/f5_tts/infer/__pycache__/utils_infer.cpython-310.pyc differ
|
|
f5_tts/infer/examples/basic/basic.toml
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
#
|
2 |
-
model = "
|
3 |
ref_audio = "infer/examples/basic/basic_ref_en.wav"
|
4 |
# If an empty "", transcribes the reference audio automatically.
|
5 |
ref_text = "Some call me nature, others call me mother nature."
|
@@ -8,4 +8,4 @@ gen_text = "I don't really care what you call me. I've been a silent spectator,
|
|
8 |
gen_file = ""
|
9 |
remove_silence = false
|
10 |
output_dir = "tests"
|
11 |
-
output_file = "infer_cli_basic.wav"
|
|
|
1 |
+
# F5-TTS | E2-TTS
|
2 |
+
model = "F5-TTS"
|
3 |
ref_audio = "infer/examples/basic/basic_ref_en.wav"
|
4 |
# If an empty "", transcribes the reference audio automatically.
|
5 |
ref_text = "Some call me nature, others call me mother nature."
|
|
|
8 |
gen_file = ""
|
9 |
remove_silence = false
|
10 |
output_dir = "tests"
|
11 |
+
output_file = "infer_cli_basic.wav"
|
f5_tts/infer/examples/multi/story.toml
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
#
|
2 |
-
model = "
|
3 |
ref_audio = "infer/examples/multi/main.flac"
|
4 |
# If an empty "", transcribes the reference audio automatically.
|
5 |
ref_text = ""
|
|
|
1 |
+
# F5-TTS | E2-TTS
|
2 |
+
model = "F5-TTS"
|
3 |
ref_audio = "infer/examples/multi/main.flac"
|
4 |
# If an empty "", transcribes the reference audio automatically.
|
5 |
ref_text = ""
|
f5_tts/infer/infer_cli.py
CHANGED
@@ -27,7 +27,7 @@ from f5_tts.infer.utils_infer import (
|
|
27 |
preprocess_ref_audio_text,
|
28 |
remove_silence_for_generated_wav,
|
29 |
)
|
30 |
-
from f5_tts.model import DiT, UNetT
|
31 |
|
32 |
|
33 |
parser = argparse.ArgumentParser(
|
@@ -50,8 +50,7 @@ parser.add_argument(
|
|
50 |
"-m",
|
51 |
"--model",
|
52 |
type=str,
|
53 |
-
|
54 |
-
help="The model name: F5TTS_v1_Base | F5TTS_Base | E2TTS_Base | etc.",
|
55 |
)
|
56 |
parser.add_argument(
|
57 |
"-mc",
|
@@ -173,7 +172,8 @@ config = tomli.load(open(args.config, "rb"))
|
|
173 |
|
174 |
# command-line interface parameters
|
175 |
|
176 |
-
model = args.model or config.get("model", "
|
|
|
177 |
ckpt_file = args.ckpt_file or config.get("ckpt_file", "")
|
178 |
vocab_file = args.vocab_file or config.get("vocab_file", "")
|
179 |
|
@@ -236,7 +236,7 @@ if save_chunk:
|
|
236 |
# load vocoder
|
237 |
|
238 |
if vocoder_name == "vocos":
|
239 |
-
vocoder_local_path = "
|
240 |
elif vocoder_name == "bigvgan":
|
241 |
vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
|
242 |
|
@@ -245,32 +245,37 @@ vocoder = load_vocoder(vocoder_name=vocoder_name, is_local=load_vocoder_from_loc
|
|
245 |
|
246 |
# load TTS model
|
247 |
|
248 |
-
|
249 |
-
|
250 |
-
).model
|
251 |
-
|
252 |
-
|
253 |
-
repo_name
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
#
|
259 |
-
|
260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
ckpt_step = 1200000
|
262 |
-
|
263 |
-
|
264 |
-
ckpt_type = "pt"
|
265 |
-
elif model == "E2TTS_Base":
|
266 |
-
repo_name = "E2-TTS"
|
267 |
-
ckpt_step = 1200000
|
268 |
-
|
269 |
-
if not ckpt_file:
|
270 |
-
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{model}/model_{ckpt_step}.{ckpt_type}"))
|
271 |
|
272 |
print(f"Using {model}...")
|
273 |
-
ema_model = load_model(model_cls, model_cfg
|
274 |
|
275 |
|
276 |
# inference process
|
|
|
27 |
preprocess_ref_audio_text,
|
28 |
remove_silence_for_generated_wav,
|
29 |
)
|
30 |
+
from f5_tts.model import DiT, UNetT
|
31 |
|
32 |
|
33 |
parser = argparse.ArgumentParser(
|
|
|
50 |
"-m",
|
51 |
"--model",
|
52 |
type=str,
|
53 |
+
help="The model name: F5-TTS | E2-TTS",
|
|
|
54 |
)
|
55 |
parser.add_argument(
|
56 |
"-mc",
|
|
|
172 |
|
173 |
# command-line interface parameters
|
174 |
|
175 |
+
model = args.model or config.get("model", "F5-TTS")
|
176 |
+
model_cfg = args.model_cfg or config.get("model_cfg", str(files("f5_tts").joinpath("configs/F5TTS_Base_train.yaml")))
|
177 |
ckpt_file = args.ckpt_file or config.get("ckpt_file", "")
|
178 |
vocab_file = args.vocab_file or config.get("vocab_file", "")
|
179 |
|
|
|
236 |
# load vocoder
|
237 |
|
238 |
if vocoder_name == "vocos":
|
239 |
+
vocoder_local_path = "ckpts/vocos"
|
240 |
elif vocoder_name == "bigvgan":
|
241 |
vocoder_local_path = "../checkpoints/bigvgan_v2_24khz_100band_256x"
|
242 |
|
|
|
245 |
|
246 |
# load TTS model
|
247 |
|
248 |
+
if model == "F5-TTS":
|
249 |
+
model_cls = DiT
|
250 |
+
model_cfg = OmegaConf.load(model_cfg).model.arch
|
251 |
+
if not ckpt_file: # path not specified, download from repo
|
252 |
+
if vocoder_name == "vocos":
|
253 |
+
repo_name = "F5-TTS"
|
254 |
+
exp_name = "F5TTS_Base"
|
255 |
+
ckpt_step = 1200000
|
256 |
+
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
257 |
+
# ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
|
258 |
+
# ckpt_file = f"ckpts/{exp_name}/model_last.pt" # .pt | .safetensors; local path
|
259 |
+
elif vocoder_name == "bigvgan":
|
260 |
+
repo_name = "F5-TTS"
|
261 |
+
exp_name = "F5TTS_Base_bigvgan"
|
262 |
+
ckpt_step = 1250000
|
263 |
+
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.pt"))
|
264 |
+
|
265 |
+
elif model == "E2-TTS":
|
266 |
+
assert args.model_cfg is None, "E2-TTS does not support custom model_cfg yet"
|
267 |
+
assert vocoder_name == "vocos", "E2-TTS only supports vocoder vocos yet"
|
268 |
+
model_cls = UNetT
|
269 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
270 |
+
if not ckpt_file: # path not specified, download from repo
|
271 |
+
repo_name = "E2-TTS"
|
272 |
+
exp_name = "E2TTS_Base"
|
273 |
ckpt_step = 1200000
|
274 |
+
ckpt_file = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
|
275 |
+
# ckpt_file = f"ckpts/{exp_name}/model_{ckpt_step}.pt" # .pt | .safetensors; local path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
|
277 |
print(f"Using {model}...")
|
278 |
+
ema_model = load_model(model_cls, model_cfg, ckpt_file, mel_spec_type=vocoder_name, vocab_file=vocab_file)
|
279 |
|
280 |
|
281 |
# inference process
|
f5_tts/infer/infer_gradio.py
CHANGED
@@ -41,12 +41,12 @@ from f5_tts.infer.utils_infer import (
|
|
41 |
)
|
42 |
|
43 |
|
44 |
-
DEFAULT_TTS_MODEL = "F5-
|
45 |
tts_model_choice = DEFAULT_TTS_MODEL
|
46 |
|
47 |
DEFAULT_TTS_MODEL_CFG = [
|
48 |
-
"hf://SWivid/F5-TTS/
|
49 |
-
"hf://SWivid/F5-TTS/
|
50 |
json.dumps(dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)),
|
51 |
]
|
52 |
|
@@ -56,15 +56,13 @@ DEFAULT_TTS_MODEL_CFG = [
|
|
56 |
vocoder = load_vocoder()
|
57 |
|
58 |
|
59 |
-
def load_f5tts():
|
60 |
-
|
61 |
-
F5TTS_model_cfg = json.loads(DEFAULT_TTS_MODEL_CFG[2])
|
62 |
return load_model(DiT, F5TTS_model_cfg, ckpt_path)
|
63 |
|
64 |
|
65 |
-
def load_e2tts():
|
66 |
-
|
67 |
-
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4, text_mask_padding=False, pe_attn_head=1)
|
68 |
return load_model(UNetT, E2TTS_model_cfg, ckpt_path)
|
69 |
|
70 |
|
@@ -75,7 +73,7 @@ def load_custom(ckpt_path: str, vocab_path="", model_cfg=None):
|
|
75 |
if vocab_path.startswith("hf://"):
|
76 |
vocab_path = str(cached_path(vocab_path))
|
77 |
if model_cfg is None:
|
78 |
-
model_cfg =
|
79 |
return load_model(DiT, model_cfg, ckpt_path, vocab_file=vocab_path)
|
80 |
|
81 |
|
@@ -132,7 +130,7 @@ def infer(
|
|
132 |
|
133 |
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
|
134 |
|
135 |
-
if model ==
|
136 |
ema_model = F5TTS_ema_model
|
137 |
elif model == "E2-TTS":
|
138 |
global E2TTS_ema_model
|
@@ -764,7 +762,7 @@ If you're having issues, try converting your reference audio to WAV or MP3, clip
|
|
764 |
"""
|
765 |
)
|
766 |
|
767 |
-
last_used_custom = files("f5_tts").joinpath("infer/.cache/
|
768 |
|
769 |
def load_last_used_custom():
|
770 |
try:
|
@@ -823,30 +821,7 @@ If you're having issues, try converting your reference audio to WAV or MP3, clip
|
|
823 |
custom_model_cfg = gr.Dropdown(
|
824 |
choices=[
|
825 |
DEFAULT_TTS_MODEL_CFG[2],
|
826 |
-
json.dumps(
|
827 |
-
dict(
|
828 |
-
dim=1024,
|
829 |
-
depth=22,
|
830 |
-
heads=16,
|
831 |
-
ff_mult=2,
|
832 |
-
text_dim=512,
|
833 |
-
text_mask_padding=False,
|
834 |
-
conv_layers=4,
|
835 |
-
pe_attn_head=1,
|
836 |
-
)
|
837 |
-
),
|
838 |
-
json.dumps(
|
839 |
-
dict(
|
840 |
-
dim=768,
|
841 |
-
depth=18,
|
842 |
-
heads=12,
|
843 |
-
ff_mult=2,
|
844 |
-
text_dim=512,
|
845 |
-
text_mask_padding=False,
|
846 |
-
conv_layers=4,
|
847 |
-
pe_attn_head=1,
|
848 |
-
)
|
849 |
-
),
|
850 |
],
|
851 |
value=load_last_used_custom()[2],
|
852 |
allow_custom_value=True,
|
@@ -900,24 +875,10 @@ If you're having issues, try converting your reference audio to WAV or MP3, clip
|
|
900 |
type=str,
|
901 |
help='The root path (or "mount point") of the application, if it\'s not served from the root ("/") of the domain. Often used when the application is behind a reverse proxy that forwards requests to the application, e.g. set "/myapp" or full URL for application served at "https://example.com/myapp".',
|
902 |
)
|
903 |
-
|
904 |
-
"--inbrowser",
|
905 |
-
"-i",
|
906 |
-
is_flag=True,
|
907 |
-
default=False,
|
908 |
-
help="Automatically launch the interface in the default web browser",
|
909 |
-
)
|
910 |
-
def main(port, host, share, api, root_path, inbrowser):
|
911 |
global app
|
912 |
print("Starting app...")
|
913 |
-
app.queue(api_open=api).launch(
|
914 |
-
server_name=host,
|
915 |
-
server_port=port,
|
916 |
-
share=share,
|
917 |
-
show_api=api,
|
918 |
-
root_path=root_path,
|
919 |
-
inbrowser=inbrowser,
|
920 |
-
)
|
921 |
|
922 |
|
923 |
if __name__ == "__main__":
|
|
|
41 |
)
|
42 |
|
43 |
|
44 |
+
DEFAULT_TTS_MODEL = "F5-TTS"
|
45 |
tts_model_choice = DEFAULT_TTS_MODEL
|
46 |
|
47 |
DEFAULT_TTS_MODEL_CFG = [
|
48 |
+
"hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors",
|
49 |
+
"hf://SWivid/F5-TTS/F5TTS_Base/vocab.txt",
|
50 |
json.dumps(dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)),
|
51 |
]
|
52 |
|
|
|
56 |
vocoder = load_vocoder()
|
57 |
|
58 |
|
59 |
+
def load_f5tts(ckpt_path=str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors"))):
|
60 |
+
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
|
|
61 |
return load_model(DiT, F5TTS_model_cfg, ckpt_path)
|
62 |
|
63 |
|
64 |
+
def load_e2tts(ckpt_path=str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.safetensors"))):
|
65 |
+
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
|
|
66 |
return load_model(UNetT, E2TTS_model_cfg, ckpt_path)
|
67 |
|
68 |
|
|
|
73 |
if vocab_path.startswith("hf://"):
|
74 |
vocab_path = str(cached_path(vocab_path))
|
75 |
if model_cfg is None:
|
76 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
77 |
return load_model(DiT, model_cfg, ckpt_path, vocab_file=vocab_path)
|
78 |
|
79 |
|
|
|
130 |
|
131 |
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, ref_text, show_info=show_info)
|
132 |
|
133 |
+
if model == "F5-TTS":
|
134 |
ema_model = F5TTS_ema_model
|
135 |
elif model == "E2-TTS":
|
136 |
global E2TTS_ema_model
|
|
|
762 |
"""
|
763 |
)
|
764 |
|
765 |
+
last_used_custom = files("f5_tts").joinpath("infer/.cache/last_used_custom_model_info.txt")
|
766 |
|
767 |
def load_last_used_custom():
|
768 |
try:
|
|
|
821 |
custom_model_cfg = gr.Dropdown(
|
822 |
choices=[
|
823 |
DEFAULT_TTS_MODEL_CFG[2],
|
824 |
+
json.dumps(dict(dim=768, depth=18, heads=12, ff_mult=2, text_dim=512, conv_layers=4)),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
825 |
],
|
826 |
value=load_last_used_custom()[2],
|
827 |
allow_custom_value=True,
|
|
|
875 |
type=str,
|
876 |
help='The root path (or "mount point") of the application, if it\'s not served from the root ("/") of the domain. Often used when the application is behind a reverse proxy that forwards requests to the application, e.g. set "/myapp" or full URL for application served at "https://example.com/myapp".',
|
877 |
)
|
878 |
+
def main(port, host, share, api, root_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
879 |
global app
|
880 |
print("Starting app...")
|
881 |
+
app.queue(api_open=api).launch(server_name=host, server_port=port, share=share, show_api=api, root_path=root_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
882 |
|
883 |
|
884 |
if __name__ == "__main__":
|
f5_tts/infer/speech_edit.py
CHANGED
@@ -1,16 +1,13 @@
|
|
1 |
import os
|
2 |
|
3 |
-
os.environ["
|
4 |
-
|
5 |
-
from importlib.resources import files
|
6 |
|
7 |
import torch
|
8 |
import torch.nn.functional as F
|
9 |
import torchaudio
|
10 |
-
from omegaconf import OmegaConf
|
11 |
|
12 |
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder, save_spectrogram
|
13 |
-
from f5_tts.model import CFM, DiT, UNetT
|
14 |
from f5_tts.model.utils import convert_char_to_pinyin, get_tokenizer
|
15 |
|
16 |
device = (
|
@@ -24,40 +21,44 @@ device = (
|
|
24 |
)
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# ---------------------- infer setting ---------------------- #
|
28 |
|
29 |
seed = None # int | None
|
30 |
|
31 |
-
exp_name = "
|
32 |
-
ckpt_step =
|
33 |
|
34 |
nfe_step = 32 # 16, 32
|
35 |
cfg_strength = 2.0
|
36 |
ode_method = "euler" # euler | midpoint
|
37 |
sway_sampling_coef = -1.0
|
38 |
speed = 1.0
|
39 |
-
target_rms = 0.1
|
40 |
-
|
41 |
-
|
42 |
-
model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{exp_name}.yaml")))
|
43 |
-
model_cls = globals()[model_cfg.model.backbone]
|
44 |
-
model_arc = model_cfg.model.arch
|
45 |
|
46 |
-
|
47 |
-
|
|
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
hop_length = model_cfg.model.mel_spec.hop_length
|
53 |
-
win_length = model_cfg.model.mel_spec.win_length
|
54 |
-
n_fft = model_cfg.model.mel_spec.n_fft
|
55 |
|
56 |
-
|
57 |
-
ckpt_path = str(files("f5_tts").joinpath("../../")) + f"ckpts/{exp_name}/model_{ckpt_step}.safetensors"
|
58 |
output_dir = "tests"
|
59 |
|
60 |
-
|
61 |
# [leverage https://github.com/MahmoudAshraf97/ctc-forced-aligner to get char level alignment]
|
62 |
# pip install git+https://github.com/MahmoudAshraf97/ctc-forced-aligner.git
|
63 |
# [write the origin_text into a file, e.g. tests/test_edit.txt]
|
@@ -66,7 +67,7 @@ output_dir = "tests"
|
|
66 |
# [--language "zho" for Chinese, "eng" for English]
|
67 |
# [if local ckpt, set --alignment_model "../checkpoints/mms-300m-1130-forced-aligner"]
|
68 |
|
69 |
-
audio_to_edit =
|
70 |
origin_text = "Some call me nature, others call me mother nature."
|
71 |
target_text = "Some call me optimist, others call me realist."
|
72 |
parts_to_edit = [
|
@@ -105,7 +106,7 @@ vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
|
|
105 |
|
106 |
# Model
|
107 |
model = CFM(
|
108 |
-
transformer=model_cls(**
|
109 |
mel_spec_kwargs=dict(
|
110 |
n_fft=n_fft,
|
111 |
hop_length=hop_length,
|
|
|
1 |
import os
|
2 |
|
3 |
+
os.environ["PYTOCH_ENABLE_MPS_FALLBACK"] = "1" # for MPS device compatibility
|
|
|
|
|
4 |
|
5 |
import torch
|
6 |
import torch.nn.functional as F
|
7 |
import torchaudio
|
|
|
8 |
|
9 |
from f5_tts.infer.utils_infer import load_checkpoint, load_vocoder, save_spectrogram
|
10 |
+
from f5_tts.model import CFM, DiT, UNetT
|
11 |
from f5_tts.model.utils import convert_char_to_pinyin, get_tokenizer
|
12 |
|
13 |
device = (
|
|
|
21 |
)
|
22 |
|
23 |
|
24 |
+
# --------------------- Dataset Settings -------------------- #
|
25 |
+
|
26 |
+
target_sample_rate = 24000
|
27 |
+
n_mel_channels = 100
|
28 |
+
hop_length = 256
|
29 |
+
win_length = 1024
|
30 |
+
n_fft = 1024
|
31 |
+
mel_spec_type = "vocos" # 'vocos' or 'bigvgan'
|
32 |
+
target_rms = 0.1
|
33 |
+
|
34 |
+
tokenizer = "pinyin"
|
35 |
+
dataset_name = "Emilia_ZH_EN"
|
36 |
+
|
37 |
+
|
38 |
# ---------------------- infer setting ---------------------- #
|
39 |
|
40 |
seed = None # int | None
|
41 |
|
42 |
+
exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base
|
43 |
+
ckpt_step = 1200000
|
44 |
|
45 |
nfe_step = 32 # 16, 32
|
46 |
cfg_strength = 2.0
|
47 |
ode_method = "euler" # euler | midpoint
|
48 |
sway_sampling_coef = -1.0
|
49 |
speed = 1.0
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
if exp_name == "F5TTS_Base":
|
52 |
+
model_cls = DiT
|
53 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
54 |
|
55 |
+
elif exp_name == "E2TTS_Base":
|
56 |
+
model_cls = UNetT
|
57 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
|
|
|
|
|
|
58 |
|
59 |
+
ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.safetensors"
|
|
|
60 |
output_dir = "tests"
|
61 |
|
|
|
62 |
# [leverage https://github.com/MahmoudAshraf97/ctc-forced-aligner to get char level alignment]
|
63 |
# pip install git+https://github.com/MahmoudAshraf97/ctc-forced-aligner.git
|
64 |
# [write the origin_text into a file, e.g. tests/test_edit.txt]
|
|
|
67 |
# [--language "zho" for Chinese, "eng" for English]
|
68 |
# [if local ckpt, set --alignment_model "../checkpoints/mms-300m-1130-forced-aligner"]
|
69 |
|
70 |
+
audio_to_edit = "src/f5_tts/infer/examples/basic/basic_ref_en.wav"
|
71 |
origin_text = "Some call me nature, others call me mother nature."
|
72 |
target_text = "Some call me optimist, others call me realist."
|
73 |
parts_to_edit = [
|
|
|
106 |
|
107 |
# Model
|
108 |
model = CFM(
|
109 |
+
transformer=model_cls(**model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels),
|
110 |
mel_spec_kwargs=dict(
|
111 |
n_fft=n_fft,
|
112 |
hop_length=hop_length,
|
f5_tts/infer/utils_infer.py
CHANGED
@@ -2,9 +2,8 @@
|
|
2 |
# Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format
|
3 |
import os
|
4 |
import sys
|
5 |
-
from concurrent.futures import ThreadPoolExecutor
|
6 |
|
7 |
-
os.environ["
|
8 |
sys.path.append(f"{os.path.dirname(os.path.abspath(__file__))}/../../third_party/BigVGAN/")
|
9 |
|
10 |
import hashlib
|
@@ -110,8 +109,13 @@ def load_vocoder(vocoder_name="vocos", is_local=False, local_path="", device=dev
|
|
110 |
repo_id = "charactr/vocos-mel-24khz"
|
111 |
config_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="config.yaml")
|
112 |
model_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="pytorch_model.bin")
|
|
|
|
|
|
|
|
|
113 |
vocoder = Vocos.from_hparams(config_path)
|
114 |
state_dict = torch.load(model_path, map_location="cpu", weights_only=True)
|
|
|
115 |
from vocos.feature_extractors import EncodecFeatures
|
116 |
|
117 |
if isinstance(vocoder.feature_extractor, EncodecFeatures):
|
@@ -301,19 +305,19 @@ def preprocess_ref_audio_text(ref_audio_orig, ref_text, clip_short=True, show_in
|
|
301 |
)
|
302 |
non_silent_wave = AudioSegment.silent(duration=0)
|
303 |
for non_silent_seg in non_silent_segs:
|
304 |
-
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) >
|
305 |
show_info("Audio is over 15s, clipping short. (1)")
|
306 |
break
|
307 |
non_silent_wave += non_silent_seg
|
308 |
|
309 |
# 2. try to find short silence for clipping if 1. failed
|
310 |
-
if len(non_silent_wave) >
|
311 |
non_silent_segs = silence.split_on_silence(
|
312 |
aseg, min_silence_len=100, silence_thresh=-40, keep_silence=1000, seek_step=10
|
313 |
)
|
314 |
non_silent_wave = AudioSegment.silent(duration=0)
|
315 |
for non_silent_seg in non_silent_segs:
|
316 |
-
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) >
|
317 |
show_info("Audio is over 15s, clipping short. (2)")
|
318 |
break
|
319 |
non_silent_wave += non_silent_seg
|
@@ -321,8 +325,8 @@ def preprocess_ref_audio_text(ref_audio_orig, ref_text, clip_short=True, show_in
|
|
321 |
aseg = non_silent_wave
|
322 |
|
323 |
# 3. if no proper silence found for clipping
|
324 |
-
if len(aseg) >
|
325 |
-
aseg = aseg[:
|
326 |
show_info("Audio is over 15s, clipping short. (3)")
|
327 |
|
328 |
aseg = remove_silence_edges(aseg) + AudioSegment.silent(duration=50)
|
@@ -383,31 +387,29 @@ def infer_process(
|
|
383 |
):
|
384 |
# Split the input text into batches
|
385 |
audio, sr = torchaudio.load(ref_audio)
|
386 |
-
max_chars = int(len(ref_text.encode("utf-8")) / (audio.shape[-1] / sr) * (
|
387 |
gen_text_batches = chunk_text(gen_text, max_chars=max_chars)
|
388 |
for i, gen_text in enumerate(gen_text_batches):
|
389 |
print(f"gen_text {i}", gen_text)
|
390 |
print("\n")
|
391 |
|
392 |
show_info(f"Generating audio in {len(gen_text_batches)} batches...")
|
393 |
-
return
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
device=device,
|
410 |
-
)
|
411 |
)
|
412 |
|
413 |
|
@@ -430,8 +432,6 @@ def infer_batch_process(
|
|
430 |
speed=1,
|
431 |
fix_duration=None,
|
432 |
device=None,
|
433 |
-
streaming=False,
|
434 |
-
chunk_size=2048,
|
435 |
):
|
436 |
audio, sr = ref_audio
|
437 |
if audio.shape[0] > 1:
|
@@ -450,12 +450,7 @@ def infer_batch_process(
|
|
450 |
|
451 |
if len(ref_text[-1].encode("utf-8")) == 1:
|
452 |
ref_text = ref_text + " "
|
453 |
-
|
454 |
-
def process_batch(gen_text):
|
455 |
-
local_speed = speed
|
456 |
-
if len(gen_text.encode("utf-8")) < 10:
|
457 |
-
local_speed = 0.3
|
458 |
-
|
459 |
# Prepare the text
|
460 |
text_list = [ref_text + gen_text]
|
461 |
final_text_list = convert_char_to_pinyin(text_list)
|
@@ -467,7 +462,7 @@ def infer_batch_process(
|
|
467 |
# Calculate duration
|
468 |
ref_text_len = len(ref_text.encode("utf-8"))
|
469 |
gen_text_len = len(gen_text.encode("utf-8"))
|
470 |
-
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len /
|
471 |
|
472 |
# inference
|
473 |
with torch.inference_mode():
|
@@ -479,88 +474,64 @@ def infer_batch_process(
|
|
479 |
cfg_strength=cfg_strength,
|
480 |
sway_sampling_coef=sway_sampling_coef,
|
481 |
)
|
482 |
-
del _
|
483 |
|
484 |
-
generated = generated.to(torch.float32)
|
485 |
generated = generated[:, ref_audio_len:, :]
|
486 |
-
|
487 |
if mel_spec_type == "vocos":
|
488 |
-
generated_wave = vocoder.decode(
|
489 |
elif mel_spec_type == "bigvgan":
|
490 |
-
generated_wave = vocoder(
|
491 |
if rms < target_rms:
|
492 |
generated_wave = generated_wave * rms / target_rms
|
493 |
|
494 |
# wav -> numpy
|
495 |
generated_wave = generated_wave.squeeze().cpu().numpy()
|
496 |
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
if streaming:
|
506 |
-
for gen_text in progress.tqdm(gen_text_batches) if progress is not None else gen_text_batches:
|
507 |
-
for chunk in process_batch(gen_text):
|
508 |
-
yield chunk
|
509 |
else:
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
# Overlapping parts
|
540 |
-
prev_overlap = prev_wave[-cross_fade_samples:]
|
541 |
-
next_overlap = next_wave[:cross_fade_samples]
|
542 |
-
|
543 |
-
# Fade out and fade in
|
544 |
-
fade_out = np.linspace(1, 0, cross_fade_samples)
|
545 |
-
fade_in = np.linspace(0, 1, cross_fade_samples)
|
546 |
-
|
547 |
-
# Cross-faded overlap
|
548 |
-
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
|
549 |
-
|
550 |
-
# Combine
|
551 |
-
new_wave = np.concatenate(
|
552 |
-
[prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]]
|
553 |
-
)
|
554 |
-
|
555 |
-
final_wave = new_wave
|
556 |
-
|
557 |
-
# Create a combined spectrogram
|
558 |
-
combined_spectrogram = np.concatenate(spectrograms, axis=1)
|
559 |
-
|
560 |
-
yield final_wave, target_sample_rate, combined_spectrogram
|
561 |
|
562 |
-
|
563 |
-
|
|
|
|
|
|
|
|
|
564 |
|
565 |
|
566 |
# remove silence from generated wav
|
|
|
2 |
# Make adjustments inside functions, and consider both gradio and cli scripts if need to change func output format
|
3 |
import os
|
4 |
import sys
|
|
|
5 |
|
6 |
+
os.environ["PYTOCH_ENABLE_MPS_FALLBACK"] = "1" # for MPS device compatibility
|
7 |
sys.path.append(f"{os.path.dirname(os.path.abspath(__file__))}/../../third_party/BigVGAN/")
|
8 |
|
9 |
import hashlib
|
|
|
109 |
repo_id = "charactr/vocos-mel-24khz"
|
110 |
config_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="config.yaml")
|
111 |
model_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="pytorch_model.bin")
|
112 |
+
# print("Download Vocos from huggingface charactr/vocos-mel-24khz")
|
113 |
+
# repo_id = "charactr/vocos-mel-24khz"
|
114 |
+
# config_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="config.yaml")
|
115 |
+
# model_path = hf_hub_download(repo_id=repo_id, cache_dir=hf_cache_dir, filename="pytorch_model.bin")
|
116 |
vocoder = Vocos.from_hparams(config_path)
|
117 |
state_dict = torch.load(model_path, map_location="cpu", weights_only=True)
|
118 |
+
# print(state_dict)
|
119 |
from vocos.feature_extractors import EncodecFeatures
|
120 |
|
121 |
if isinstance(vocoder.feature_extractor, EncodecFeatures):
|
|
|
305 |
)
|
306 |
non_silent_wave = AudioSegment.silent(duration=0)
|
307 |
for non_silent_seg in non_silent_segs:
|
308 |
+
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000:
|
309 |
show_info("Audio is over 15s, clipping short. (1)")
|
310 |
break
|
311 |
non_silent_wave += non_silent_seg
|
312 |
|
313 |
# 2. try to find short silence for clipping if 1. failed
|
314 |
+
if len(non_silent_wave) > 15000:
|
315 |
non_silent_segs = silence.split_on_silence(
|
316 |
aseg, min_silence_len=100, silence_thresh=-40, keep_silence=1000, seek_step=10
|
317 |
)
|
318 |
non_silent_wave = AudioSegment.silent(duration=0)
|
319 |
for non_silent_seg in non_silent_segs:
|
320 |
+
if len(non_silent_wave) > 6000 and len(non_silent_wave + non_silent_seg) > 15000:
|
321 |
show_info("Audio is over 15s, clipping short. (2)")
|
322 |
break
|
323 |
non_silent_wave += non_silent_seg
|
|
|
325 |
aseg = non_silent_wave
|
326 |
|
327 |
# 3. if no proper silence found for clipping
|
328 |
+
if len(aseg) > 15000:
|
329 |
+
aseg = aseg[:15000]
|
330 |
show_info("Audio is over 15s, clipping short. (3)")
|
331 |
|
332 |
aseg = remove_silence_edges(aseg) + AudioSegment.silent(duration=50)
|
|
|
387 |
):
|
388 |
# Split the input text into batches
|
389 |
audio, sr = torchaudio.load(ref_audio)
|
390 |
+
max_chars = int(len(ref_text.encode("utf-8")) / (audio.shape[-1] / sr) * (25 - audio.shape[-1] / sr))
|
391 |
gen_text_batches = chunk_text(gen_text, max_chars=max_chars)
|
392 |
for i, gen_text in enumerate(gen_text_batches):
|
393 |
print(f"gen_text {i}", gen_text)
|
394 |
print("\n")
|
395 |
|
396 |
show_info(f"Generating audio in {len(gen_text_batches)} batches...")
|
397 |
+
return infer_batch_process(
|
398 |
+
(audio, sr),
|
399 |
+
ref_text,
|
400 |
+
gen_text_batches,
|
401 |
+
model_obj,
|
402 |
+
vocoder,
|
403 |
+
mel_spec_type=mel_spec_type,
|
404 |
+
progress=progress,
|
405 |
+
target_rms=target_rms,
|
406 |
+
cross_fade_duration=cross_fade_duration,
|
407 |
+
nfe_step=nfe_step,
|
408 |
+
cfg_strength=cfg_strength,
|
409 |
+
sway_sampling_coef=sway_sampling_coef,
|
410 |
+
speed=speed,
|
411 |
+
fix_duration=fix_duration,
|
412 |
+
device=device,
|
|
|
|
|
413 |
)
|
414 |
|
415 |
|
|
|
432 |
speed=1,
|
433 |
fix_duration=None,
|
434 |
device=None,
|
|
|
|
|
435 |
):
|
436 |
audio, sr = ref_audio
|
437 |
if audio.shape[0] > 1:
|
|
|
450 |
|
451 |
if len(ref_text[-1].encode("utf-8")) == 1:
|
452 |
ref_text = ref_text + " "
|
453 |
+
for i, gen_text in enumerate(progress.tqdm(gen_text_batches)):
|
|
|
|
|
|
|
|
|
|
|
454 |
# Prepare the text
|
455 |
text_list = [ref_text + gen_text]
|
456 |
final_text_list = convert_char_to_pinyin(text_list)
|
|
|
462 |
# Calculate duration
|
463 |
ref_text_len = len(ref_text.encode("utf-8"))
|
464 |
gen_text_len = len(gen_text.encode("utf-8"))
|
465 |
+
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
|
466 |
|
467 |
# inference
|
468 |
with torch.inference_mode():
|
|
|
474 |
cfg_strength=cfg_strength,
|
475 |
sway_sampling_coef=sway_sampling_coef,
|
476 |
)
|
|
|
477 |
|
478 |
+
generated = generated.to(torch.float32)
|
479 |
generated = generated[:, ref_audio_len:, :]
|
480 |
+
generated_mel_spec = generated.permute(0, 2, 1)
|
481 |
if mel_spec_type == "vocos":
|
482 |
+
generated_wave = vocoder.decode(generated_mel_spec)
|
483 |
elif mel_spec_type == "bigvgan":
|
484 |
+
generated_wave = vocoder(generated_mel_spec)
|
485 |
if rms < target_rms:
|
486 |
generated_wave = generated_wave * rms / target_rms
|
487 |
|
488 |
# wav -> numpy
|
489 |
generated_wave = generated_wave.squeeze().cpu().numpy()
|
490 |
|
491 |
+
generated_waves.append(generated_wave)
|
492 |
+
spectrograms.append(generated_mel_spec[0].cpu().numpy())
|
493 |
+
|
494 |
+
# Combine all generated waves with cross-fading
|
495 |
+
if cross_fade_duration <= 0:
|
496 |
+
# Simply concatenate
|
497 |
+
final_wave = np.concatenate(generated_waves)
|
|
|
|
|
|
|
|
|
|
|
498 |
else:
|
499 |
+
final_wave = generated_waves[0]
|
500 |
+
for i in range(1, len(generated_waves)):
|
501 |
+
prev_wave = final_wave
|
502 |
+
next_wave = generated_waves[i]
|
503 |
+
|
504 |
+
# Calculate cross-fade samples, ensuring it does not exceed wave lengths
|
505 |
+
cross_fade_samples = int(cross_fade_duration * target_sample_rate)
|
506 |
+
cross_fade_samples = min(cross_fade_samples, len(prev_wave), len(next_wave))
|
507 |
+
|
508 |
+
if cross_fade_samples <= 0:
|
509 |
+
# No overlap possible, concatenate
|
510 |
+
final_wave = np.concatenate([prev_wave, next_wave])
|
511 |
+
continue
|
512 |
+
|
513 |
+
# Overlapping parts
|
514 |
+
prev_overlap = prev_wave[-cross_fade_samples:]
|
515 |
+
next_overlap = next_wave[:cross_fade_samples]
|
516 |
+
|
517 |
+
# Fade out and fade in
|
518 |
+
fade_out = np.linspace(1, 0, cross_fade_samples)
|
519 |
+
fade_in = np.linspace(0, 1, cross_fade_samples)
|
520 |
+
|
521 |
+
# Cross-faded overlap
|
522 |
+
cross_faded_overlap = prev_overlap * fade_out + next_overlap * fade_in
|
523 |
+
|
524 |
+
# Combine
|
525 |
+
new_wave = np.concatenate(
|
526 |
+
[prev_wave[:-cross_fade_samples], cross_faded_overlap, next_wave[cross_fade_samples:]]
|
527 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
528 |
|
529 |
+
final_wave = new_wave
|
530 |
+
|
531 |
+
# Create a combined spectrogram
|
532 |
+
combined_spectrogram = np.concatenate(spectrograms, axis=1)
|
533 |
+
|
534 |
+
return final_wave, target_sample_rate, combined_spectrogram
|
535 |
|
536 |
|
537 |
# remove silence from generated wav
|
f5_tts/model/__pycache__/__init__.cpython-310.pyc
CHANGED
Binary files a/f5_tts/model/__pycache__/__init__.cpython-310.pyc and b/f5_tts/model/__pycache__/__init__.cpython-310.pyc differ
|
|
f5_tts/model/__pycache__/cfm.cpython-310.pyc
CHANGED
Binary files a/f5_tts/model/__pycache__/cfm.cpython-310.pyc and b/f5_tts/model/__pycache__/cfm.cpython-310.pyc differ
|
|
f5_tts/model/__pycache__/dataset.cpython-310.pyc
CHANGED
Binary files a/f5_tts/model/__pycache__/dataset.cpython-310.pyc and b/f5_tts/model/__pycache__/dataset.cpython-310.pyc differ
|
|
f5_tts/model/__pycache__/modules.cpython-310.pyc
CHANGED
Binary files a/f5_tts/model/__pycache__/modules.cpython-310.pyc and b/f5_tts/model/__pycache__/modules.cpython-310.pyc differ
|
|
f5_tts/model/__pycache__/trainer.cpython-310.pyc
CHANGED
Binary files a/f5_tts/model/__pycache__/trainer.cpython-310.pyc and b/f5_tts/model/__pycache__/trainer.cpython-310.pyc differ
|
|
f5_tts/model/__pycache__/utils.cpython-310.pyc
CHANGED
Binary files a/f5_tts/model/__pycache__/utils.cpython-310.pyc and b/f5_tts/model/__pycache__/utils.cpython-310.pyc differ
|
|
f5_tts/model/backbones/README.md
CHANGED
@@ -4,7 +4,7 @@
|
|
4 |
### unett.py
|
5 |
- flat unet transformer
|
6 |
- structure same as in e2-tts & voicebox paper except using rotary pos emb
|
7 |
-
- possible abs pos emb & convnextv2 blocks for embedded text before concat
|
8 |
|
9 |
### dit.py
|
10 |
- adaln-zero dit
|
@@ -14,7 +14,7 @@
|
|
14 |
- possible long skip connection (first layer to last layer)
|
15 |
|
16 |
### mmdit.py
|
17 |
-
-
|
18 |
- timestep as condition
|
19 |
- left stream: text embedded and applied a abs pos emb
|
20 |
- right stream: masked_cond & noised_input concatted and with same conv pos emb as unett
|
|
|
4 |
### unett.py
|
5 |
- flat unet transformer
|
6 |
- structure same as in e2-tts & voicebox paper except using rotary pos emb
|
7 |
+
- update: allow possible abs pos emb & convnextv2 blocks for embedded text before concat
|
8 |
|
9 |
### dit.py
|
10 |
- adaln-zero dit
|
|
|
14 |
- possible long skip connection (first layer to last layer)
|
15 |
|
16 |
### mmdit.py
|
17 |
+
- sd3 structure
|
18 |
- timestep as condition
|
19 |
- left stream: text embedded and applied a abs pos emb
|
20 |
- right stream: masked_cond & noised_input concatted and with same conv pos emb as unett
|
f5_tts/model/backbones/__pycache__/dit.cpython-310.pyc
CHANGED
Binary files a/f5_tts/model/backbones/__pycache__/dit.cpython-310.pyc and b/f5_tts/model/backbones/__pycache__/dit.cpython-310.pyc differ
|
|
f5_tts/model/backbones/__pycache__/mmdit.cpython-310.pyc
CHANGED
Binary files a/f5_tts/model/backbones/__pycache__/mmdit.cpython-310.pyc and b/f5_tts/model/backbones/__pycache__/mmdit.cpython-310.pyc differ
|
|
f5_tts/model/backbones/__pycache__/unett.cpython-310.pyc
CHANGED
Binary files a/f5_tts/model/backbones/__pycache__/unett.cpython-310.pyc and b/f5_tts/model/backbones/__pycache__/unett.cpython-310.pyc differ
|
|
f5_tts/model/backbones/dit.py
CHANGED
@@ -20,7 +20,7 @@ from f5_tts.model.modules import (
|
|
20 |
ConvNeXtV2Block,
|
21 |
ConvPositionEmbedding,
|
22 |
DiTBlock,
|
23 |
-
|
24 |
precompute_freqs_cis,
|
25 |
get_pos_embed_indices,
|
26 |
)
|
@@ -30,12 +30,10 @@ from f5_tts.model.modules import (
|
|
30 |
|
31 |
|
32 |
class TextEmbedding(nn.Module):
|
33 |
-
def __init__(self, text_num_embeds, text_dim,
|
34 |
super().__init__()
|
35 |
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
36 |
|
37 |
-
self.mask_padding = mask_padding # mask filler and batch padding tokens or not
|
38 |
-
|
39 |
if conv_layers > 0:
|
40 |
self.extra_modeling = True
|
41 |
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
@@ -51,8 +49,6 @@ class TextEmbedding(nn.Module):
|
|
51 |
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
52 |
batch, text_len = text.shape[0], text.shape[1]
|
53 |
text = F.pad(text, (0, seq_len - text_len), value=0)
|
54 |
-
if self.mask_padding:
|
55 |
-
text_mask = text == 0
|
56 |
|
57 |
if drop_text: # cfg for text
|
58 |
text = torch.zeros_like(text)
|
@@ -68,13 +64,7 @@ class TextEmbedding(nn.Module):
|
|
68 |
text = text + text_pos_embed
|
69 |
|
70 |
# convnextv2 blocks
|
71 |
-
|
72 |
-
text = text.masked_fill(text_mask.unsqueeze(-1).expand(-1, -1, text.size(-1)), 0.0)
|
73 |
-
for block in self.text_blocks:
|
74 |
-
text = block(text)
|
75 |
-
text = text.masked_fill(text_mask.unsqueeze(-1).expand(-1, -1, text.size(-1)), 0.0)
|
76 |
-
else:
|
77 |
-
text = self.text_blocks(text)
|
78 |
|
79 |
return text
|
80 |
|
@@ -113,10 +103,7 @@ class DiT(nn.Module):
|
|
113 |
mel_dim=100,
|
114 |
text_num_embeds=256,
|
115 |
text_dim=None,
|
116 |
-
text_mask_padding=True,
|
117 |
-
qk_norm=None,
|
118 |
conv_layers=0,
|
119 |
-
pe_attn_head=None,
|
120 |
long_skip_connection=False,
|
121 |
checkpoint_activations=False,
|
122 |
):
|
@@ -125,10 +112,7 @@ class DiT(nn.Module):
|
|
125 |
self.time_embed = TimestepEmbedding(dim)
|
126 |
if text_dim is None:
|
127 |
text_dim = mel_dim
|
128 |
-
self.text_embed = TextEmbedding(
|
129 |
-
text_num_embeds, text_dim, mask_padding=text_mask_padding, conv_layers=conv_layers
|
130 |
-
)
|
131 |
-
self.text_cond, self.text_uncond = None, None # text cache
|
132 |
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
|
133 |
|
134 |
self.rotary_embed = RotaryEmbedding(dim_head)
|
@@ -137,40 +121,15 @@ class DiT(nn.Module):
|
|
137 |
self.depth = depth
|
138 |
|
139 |
self.transformer_blocks = nn.ModuleList(
|
140 |
-
[
|
141 |
-
DiTBlock(
|
142 |
-
dim=dim,
|
143 |
-
heads=heads,
|
144 |
-
dim_head=dim_head,
|
145 |
-
ff_mult=ff_mult,
|
146 |
-
dropout=dropout,
|
147 |
-
qk_norm=qk_norm,
|
148 |
-
pe_attn_head=pe_attn_head,
|
149 |
-
)
|
150 |
-
for _ in range(depth)
|
151 |
-
]
|
152 |
)
|
153 |
self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None
|
154 |
|
155 |
-
self.norm_out =
|
156 |
self.proj_out = nn.Linear(dim, mel_dim)
|
157 |
|
158 |
self.checkpoint_activations = checkpoint_activations
|
159 |
|
160 |
-
self.initialize_weights()
|
161 |
-
|
162 |
-
def initialize_weights(self):
|
163 |
-
# Zero-out AdaLN layers in DiT blocks:
|
164 |
-
for block in self.transformer_blocks:
|
165 |
-
nn.init.constant_(block.attn_norm.linear.weight, 0)
|
166 |
-
nn.init.constant_(block.attn_norm.linear.bias, 0)
|
167 |
-
|
168 |
-
# Zero-out output layers:
|
169 |
-
nn.init.constant_(self.norm_out.linear.weight, 0)
|
170 |
-
nn.init.constant_(self.norm_out.linear.bias, 0)
|
171 |
-
nn.init.constant_(self.proj_out.weight, 0)
|
172 |
-
nn.init.constant_(self.proj_out.bias, 0)
|
173 |
-
|
174 |
def ckpt_wrapper(self, module):
|
175 |
# https://github.com/chuanyangjin/fast-DiT/blob/main/models.py
|
176 |
def ckpt_forward(*inputs):
|
@@ -179,9 +138,6 @@ class DiT(nn.Module):
|
|
179 |
|
180 |
return ckpt_forward
|
181 |
|
182 |
-
def clear_cache(self):
|
183 |
-
self.text_cond, self.text_uncond = None, None
|
184 |
-
|
185 |
def forward(
|
186 |
self,
|
187 |
x: float["b n d"], # nosied input audio # noqa: F722
|
@@ -191,25 +147,14 @@ class DiT(nn.Module):
|
|
191 |
drop_audio_cond, # cfg for cond audio
|
192 |
drop_text, # cfg for text
|
193 |
mask: bool["b n"] | None = None, # noqa: F722
|
194 |
-
cache=False,
|
195 |
):
|
196 |
batch, seq_len = x.shape[0], x.shape[1]
|
197 |
if time.ndim == 0:
|
198 |
time = time.repeat(batch)
|
199 |
|
200 |
-
# t: conditioning time,
|
201 |
t = self.time_embed(time)
|
202 |
-
|
203 |
-
if drop_text:
|
204 |
-
if self.text_uncond is None:
|
205 |
-
self.text_uncond = self.text_embed(text, seq_len, drop_text=True)
|
206 |
-
text_embed = self.text_uncond
|
207 |
-
else:
|
208 |
-
if self.text_cond is None:
|
209 |
-
self.text_cond = self.text_embed(text, seq_len, drop_text=False)
|
210 |
-
text_embed = self.text_cond
|
211 |
-
else:
|
212 |
-
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
213 |
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
214 |
|
215 |
rope = self.rotary_embed.forward_from_seq_len(seq_len)
|
|
|
20 |
ConvNeXtV2Block,
|
21 |
ConvPositionEmbedding,
|
22 |
DiTBlock,
|
23 |
+
AdaLayerNormZero_Final,
|
24 |
precompute_freqs_cis,
|
25 |
get_pos_embed_indices,
|
26 |
)
|
|
|
30 |
|
31 |
|
32 |
class TextEmbedding(nn.Module):
|
33 |
+
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
|
34 |
super().__init__()
|
35 |
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
36 |
|
|
|
|
|
37 |
if conv_layers > 0:
|
38 |
self.extra_modeling = True
|
39 |
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
|
|
49 |
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
50 |
batch, text_len = text.shape[0], text.shape[1]
|
51 |
text = F.pad(text, (0, seq_len - text_len), value=0)
|
|
|
|
|
52 |
|
53 |
if drop_text: # cfg for text
|
54 |
text = torch.zeros_like(text)
|
|
|
64 |
text = text + text_pos_embed
|
65 |
|
66 |
# convnextv2 blocks
|
67 |
+
text = self.text_blocks(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
return text
|
70 |
|
|
|
103 |
mel_dim=100,
|
104 |
text_num_embeds=256,
|
105 |
text_dim=None,
|
|
|
|
|
106 |
conv_layers=0,
|
|
|
107 |
long_skip_connection=False,
|
108 |
checkpoint_activations=False,
|
109 |
):
|
|
|
112 |
self.time_embed = TimestepEmbedding(dim)
|
113 |
if text_dim is None:
|
114 |
text_dim = mel_dim
|
115 |
+
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers)
|
|
|
|
|
|
|
116 |
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
|
117 |
|
118 |
self.rotary_embed = RotaryEmbedding(dim_head)
|
|
|
121 |
self.depth = depth
|
122 |
|
123 |
self.transformer_blocks = nn.ModuleList(
|
124 |
+
[DiTBlock(dim=dim, heads=heads, dim_head=dim_head, ff_mult=ff_mult, dropout=dropout) for _ in range(depth)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
)
|
126 |
self.long_skip_connection = nn.Linear(dim * 2, dim, bias=False) if long_skip_connection else None
|
127 |
|
128 |
+
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
|
129 |
self.proj_out = nn.Linear(dim, mel_dim)
|
130 |
|
131 |
self.checkpoint_activations = checkpoint_activations
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
def ckpt_wrapper(self, module):
|
134 |
# https://github.com/chuanyangjin/fast-DiT/blob/main/models.py
|
135 |
def ckpt_forward(*inputs):
|
|
|
138 |
|
139 |
return ckpt_forward
|
140 |
|
|
|
|
|
|
|
141 |
def forward(
|
142 |
self,
|
143 |
x: float["b n d"], # nosied input audio # noqa: F722
|
|
|
147 |
drop_audio_cond, # cfg for cond audio
|
148 |
drop_text, # cfg for text
|
149 |
mask: bool["b n"] | None = None, # noqa: F722
|
|
|
150 |
):
|
151 |
batch, seq_len = x.shape[0], x.shape[1]
|
152 |
if time.ndim == 0:
|
153 |
time = time.repeat(batch)
|
154 |
|
155 |
+
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
156 |
t = self.time_embed(time)
|
157 |
+
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
159 |
|
160 |
rope = self.rotary_embed.forward_from_seq_len(seq_len)
|
f5_tts/model/backbones/mmdit.py
CHANGED
@@ -18,7 +18,7 @@ from f5_tts.model.modules import (
|
|
18 |
TimestepEmbedding,
|
19 |
ConvPositionEmbedding,
|
20 |
MMDiTBlock,
|
21 |
-
|
22 |
precompute_freqs_cis,
|
23 |
get_pos_embed_indices,
|
24 |
)
|
@@ -28,24 +28,18 @@ from f5_tts.model.modules import (
|
|
28 |
|
29 |
|
30 |
class TextEmbedding(nn.Module):
|
31 |
-
def __init__(self, out_dim, text_num_embeds
|
32 |
super().__init__()
|
33 |
self.text_embed = nn.Embedding(text_num_embeds + 1, out_dim) # will use 0 as filler token
|
34 |
|
35 |
-
self.mask_padding = mask_padding # mask filler and batch padding tokens or not
|
36 |
-
|
37 |
self.precompute_max_pos = 1024
|
38 |
self.register_buffer("freqs_cis", precompute_freqs_cis(out_dim, self.precompute_max_pos), persistent=False)
|
39 |
|
40 |
def forward(self, text: int["b nt"], drop_text=False) -> int["b nt d"]: # noqa: F722
|
41 |
-
text = text + 1
|
42 |
-
if
|
43 |
-
text_mask = text == 0
|
44 |
-
|
45 |
-
if drop_text: # cfg for text
|
46 |
text = torch.zeros_like(text)
|
47 |
-
|
48 |
-
text = self.text_embed(text) # b nt -> b nt d
|
49 |
|
50 |
# sinus pos emb
|
51 |
batch_start = torch.zeros((text.shape[0],), dtype=torch.long)
|
@@ -55,9 +49,6 @@ class TextEmbedding(nn.Module):
|
|
55 |
|
56 |
text = text + text_pos_embed
|
57 |
|
58 |
-
if self.mask_padding:
|
59 |
-
text = text.masked_fill(text_mask.unsqueeze(-1).expand(-1, -1, text.size(-1)), 0.0)
|
60 |
-
|
61 |
return text
|
62 |
|
63 |
|
@@ -92,16 +83,13 @@ class MMDiT(nn.Module):
|
|
92 |
dim_head=64,
|
93 |
dropout=0.1,
|
94 |
ff_mult=4,
|
95 |
-
mel_dim=100,
|
96 |
text_num_embeds=256,
|
97 |
-
|
98 |
-
qk_norm=None,
|
99 |
):
|
100 |
super().__init__()
|
101 |
|
102 |
self.time_embed = TimestepEmbedding(dim)
|
103 |
-
self.text_embed = TextEmbedding(dim, text_num_embeds
|
104 |
-
self.text_cond, self.text_uncond = None, None # text cache
|
105 |
self.audio_embed = AudioEmbedding(mel_dim, dim)
|
106 |
|
107 |
self.rotary_embed = RotaryEmbedding(dim_head)
|
@@ -118,33 +106,13 @@ class MMDiT(nn.Module):
|
|
118 |
dropout=dropout,
|
119 |
ff_mult=ff_mult,
|
120 |
context_pre_only=i == depth - 1,
|
121 |
-
qk_norm=qk_norm,
|
122 |
)
|
123 |
for i in range(depth)
|
124 |
]
|
125 |
)
|
126 |
-
self.norm_out =
|
127 |
self.proj_out = nn.Linear(dim, mel_dim)
|
128 |
|
129 |
-
self.initialize_weights()
|
130 |
-
|
131 |
-
def initialize_weights(self):
|
132 |
-
# Zero-out AdaLN layers in MMDiT blocks:
|
133 |
-
for block in self.transformer_blocks:
|
134 |
-
nn.init.constant_(block.attn_norm_x.linear.weight, 0)
|
135 |
-
nn.init.constant_(block.attn_norm_x.linear.bias, 0)
|
136 |
-
nn.init.constant_(block.attn_norm_c.linear.weight, 0)
|
137 |
-
nn.init.constant_(block.attn_norm_c.linear.bias, 0)
|
138 |
-
|
139 |
-
# Zero-out output layers:
|
140 |
-
nn.init.constant_(self.norm_out.linear.weight, 0)
|
141 |
-
nn.init.constant_(self.norm_out.linear.bias, 0)
|
142 |
-
nn.init.constant_(self.proj_out.weight, 0)
|
143 |
-
nn.init.constant_(self.proj_out.bias, 0)
|
144 |
-
|
145 |
-
def clear_cache(self):
|
146 |
-
self.text_cond, self.text_uncond = None, None
|
147 |
-
|
148 |
def forward(
|
149 |
self,
|
150 |
x: float["b n d"], # nosied input audio # noqa: F722
|
@@ -154,7 +122,6 @@ class MMDiT(nn.Module):
|
|
154 |
drop_audio_cond, # cfg for cond audio
|
155 |
drop_text, # cfg for text
|
156 |
mask: bool["b n"] | None = None, # noqa: F722
|
157 |
-
cache=False,
|
158 |
):
|
159 |
batch = x.shape[0]
|
160 |
if time.ndim == 0:
|
@@ -162,17 +129,7 @@ class MMDiT(nn.Module):
|
|
162 |
|
163 |
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
|
164 |
t = self.time_embed(time)
|
165 |
-
|
166 |
-
if drop_text:
|
167 |
-
if self.text_uncond is None:
|
168 |
-
self.text_uncond = self.text_embed(text, drop_text=True)
|
169 |
-
c = self.text_uncond
|
170 |
-
else:
|
171 |
-
if self.text_cond is None:
|
172 |
-
self.text_cond = self.text_embed(text, drop_text=False)
|
173 |
-
c = self.text_cond
|
174 |
-
else:
|
175 |
-
c = self.text_embed(text, drop_text=drop_text)
|
176 |
x = self.audio_embed(x, cond, drop_audio_cond=drop_audio_cond)
|
177 |
|
178 |
seq_len = x.shape[1]
|
|
|
18 |
TimestepEmbedding,
|
19 |
ConvPositionEmbedding,
|
20 |
MMDiTBlock,
|
21 |
+
AdaLayerNormZero_Final,
|
22 |
precompute_freqs_cis,
|
23 |
get_pos_embed_indices,
|
24 |
)
|
|
|
28 |
|
29 |
|
30 |
class TextEmbedding(nn.Module):
|
31 |
+
def __init__(self, out_dim, text_num_embeds):
|
32 |
super().__init__()
|
33 |
self.text_embed = nn.Embedding(text_num_embeds + 1, out_dim) # will use 0 as filler token
|
34 |
|
|
|
|
|
35 |
self.precompute_max_pos = 1024
|
36 |
self.register_buffer("freqs_cis", precompute_freqs_cis(out_dim, self.precompute_max_pos), persistent=False)
|
37 |
|
38 |
def forward(self, text: int["b nt"], drop_text=False) -> int["b nt d"]: # noqa: F722
|
39 |
+
text = text + 1
|
40 |
+
if drop_text:
|
|
|
|
|
|
|
41 |
text = torch.zeros_like(text)
|
42 |
+
text = self.text_embed(text)
|
|
|
43 |
|
44 |
# sinus pos emb
|
45 |
batch_start = torch.zeros((text.shape[0],), dtype=torch.long)
|
|
|
49 |
|
50 |
text = text + text_pos_embed
|
51 |
|
|
|
|
|
|
|
52 |
return text
|
53 |
|
54 |
|
|
|
83 |
dim_head=64,
|
84 |
dropout=0.1,
|
85 |
ff_mult=4,
|
|
|
86 |
text_num_embeds=256,
|
87 |
+
mel_dim=100,
|
|
|
88 |
):
|
89 |
super().__init__()
|
90 |
|
91 |
self.time_embed = TimestepEmbedding(dim)
|
92 |
+
self.text_embed = TextEmbedding(dim, text_num_embeds)
|
|
|
93 |
self.audio_embed = AudioEmbedding(mel_dim, dim)
|
94 |
|
95 |
self.rotary_embed = RotaryEmbedding(dim_head)
|
|
|
106 |
dropout=dropout,
|
107 |
ff_mult=ff_mult,
|
108 |
context_pre_only=i == depth - 1,
|
|
|
109 |
)
|
110 |
for i in range(depth)
|
111 |
]
|
112 |
)
|
113 |
+
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation
|
114 |
self.proj_out = nn.Linear(dim, mel_dim)
|
115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
def forward(
|
117 |
self,
|
118 |
x: float["b n d"], # nosied input audio # noqa: F722
|
|
|
122 |
drop_audio_cond, # cfg for cond audio
|
123 |
drop_text, # cfg for text
|
124 |
mask: bool["b n"] | None = None, # noqa: F722
|
|
|
125 |
):
|
126 |
batch = x.shape[0]
|
127 |
if time.ndim == 0:
|
|
|
129 |
|
130 |
# t: conditioning (time), c: context (text + masked cond audio), x: noised input audio
|
131 |
t = self.time_embed(time)
|
132 |
+
c = self.text_embed(text, drop_text=drop_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
x = self.audio_embed(x, cond, drop_audio_cond=drop_audio_cond)
|
134 |
|
135 |
seq_len = x.shape[1]
|
f5_tts/model/backbones/unett.py
CHANGED
@@ -33,12 +33,10 @@ from f5_tts.model.modules import (
|
|
33 |
|
34 |
|
35 |
class TextEmbedding(nn.Module):
|
36 |
-
def __init__(self, text_num_embeds, text_dim,
|
37 |
super().__init__()
|
38 |
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
39 |
|
40 |
-
self.mask_padding = mask_padding # mask filler and batch padding tokens or not
|
41 |
-
|
42 |
if conv_layers > 0:
|
43 |
self.extra_modeling = True
|
44 |
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
@@ -54,8 +52,6 @@ class TextEmbedding(nn.Module):
|
|
54 |
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
55 |
batch, text_len = text.shape[0], text.shape[1]
|
56 |
text = F.pad(text, (0, seq_len - text_len), value=0)
|
57 |
-
if self.mask_padding:
|
58 |
-
text_mask = text == 0
|
59 |
|
60 |
if drop_text: # cfg for text
|
61 |
text = torch.zeros_like(text)
|
@@ -71,13 +67,7 @@ class TextEmbedding(nn.Module):
|
|
71 |
text = text + text_pos_embed
|
72 |
|
73 |
# convnextv2 blocks
|
74 |
-
|
75 |
-
text = text.masked_fill(text_mask.unsqueeze(-1).expand(-1, -1, text.size(-1)), 0.0)
|
76 |
-
for block in self.text_blocks:
|
77 |
-
text = block(text)
|
78 |
-
text = text.masked_fill(text_mask.unsqueeze(-1).expand(-1, -1, text.size(-1)), 0.0)
|
79 |
-
else:
|
80 |
-
text = self.text_blocks(text)
|
81 |
|
82 |
return text
|
83 |
|
@@ -116,10 +106,7 @@ class UNetT(nn.Module):
|
|
116 |
mel_dim=100,
|
117 |
text_num_embeds=256,
|
118 |
text_dim=None,
|
119 |
-
text_mask_padding=True,
|
120 |
-
qk_norm=None,
|
121 |
conv_layers=0,
|
122 |
-
pe_attn_head=None,
|
123 |
skip_connect_type: Literal["add", "concat", "none"] = "concat",
|
124 |
):
|
125 |
super().__init__()
|
@@ -128,10 +115,7 @@ class UNetT(nn.Module):
|
|
128 |
self.time_embed = TimestepEmbedding(dim)
|
129 |
if text_dim is None:
|
130 |
text_dim = mel_dim
|
131 |
-
self.text_embed = TextEmbedding(
|
132 |
-
text_num_embeds, text_dim, mask_padding=text_mask_padding, conv_layers=conv_layers
|
133 |
-
)
|
134 |
-
self.text_cond, self.text_uncond = None, None # text cache
|
135 |
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
|
136 |
|
137 |
self.rotary_embed = RotaryEmbedding(dim_head)
|
@@ -150,12 +134,11 @@ class UNetT(nn.Module):
|
|
150 |
|
151 |
attn_norm = RMSNorm(dim)
|
152 |
attn = Attention(
|
153 |
-
processor=AttnProcessor(
|
154 |
dim=dim,
|
155 |
heads=heads,
|
156 |
dim_head=dim_head,
|
157 |
dropout=dropout,
|
158 |
-
qk_norm=qk_norm,
|
159 |
)
|
160 |
|
161 |
ff_norm = RMSNorm(dim)
|
@@ -178,9 +161,6 @@ class UNetT(nn.Module):
|
|
178 |
self.norm_out = RMSNorm(dim)
|
179 |
self.proj_out = nn.Linear(dim, mel_dim)
|
180 |
|
181 |
-
def clear_cache(self):
|
182 |
-
self.text_cond, self.text_uncond = None, None
|
183 |
-
|
184 |
def forward(
|
185 |
self,
|
186 |
x: float["b n d"], # nosied input audio # noqa: F722
|
@@ -190,7 +170,6 @@ class UNetT(nn.Module):
|
|
190 |
drop_audio_cond, # cfg for cond audio
|
191 |
drop_text, # cfg for text
|
192 |
mask: bool["b n"] | None = None, # noqa: F722
|
193 |
-
cache=False,
|
194 |
):
|
195 |
batch, seq_len = x.shape[0], x.shape[1]
|
196 |
if time.ndim == 0:
|
@@ -198,17 +177,7 @@ class UNetT(nn.Module):
|
|
198 |
|
199 |
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
200 |
t = self.time_embed(time)
|
201 |
-
|
202 |
-
if drop_text:
|
203 |
-
if self.text_uncond is None:
|
204 |
-
self.text_uncond = self.text_embed(text, seq_len, drop_text=True)
|
205 |
-
text_embed = self.text_uncond
|
206 |
-
else:
|
207 |
-
if self.text_cond is None:
|
208 |
-
self.text_cond = self.text_embed(text, seq_len, drop_text=False)
|
209 |
-
text_embed = self.text_cond
|
210 |
-
else:
|
211 |
-
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
212 |
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
213 |
|
214 |
# postfix time t to input x, [b n d] -> [b n+1 d]
|
|
|
33 |
|
34 |
|
35 |
class TextEmbedding(nn.Module):
|
36 |
+
def __init__(self, text_num_embeds, text_dim, conv_layers=0, conv_mult=2):
|
37 |
super().__init__()
|
38 |
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token
|
39 |
|
|
|
|
|
40 |
if conv_layers > 0:
|
41 |
self.extra_modeling = True
|
42 |
self.precompute_max_pos = 4096 # ~44s of 24khz audio
|
|
|
52 |
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens
|
53 |
batch, text_len = text.shape[0], text.shape[1]
|
54 |
text = F.pad(text, (0, seq_len - text_len), value=0)
|
|
|
|
|
55 |
|
56 |
if drop_text: # cfg for text
|
57 |
text = torch.zeros_like(text)
|
|
|
67 |
text = text + text_pos_embed
|
68 |
|
69 |
# convnextv2 blocks
|
70 |
+
text = self.text_blocks(text)
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
return text
|
73 |
|
|
|
106 |
mel_dim=100,
|
107 |
text_num_embeds=256,
|
108 |
text_dim=None,
|
|
|
|
|
109 |
conv_layers=0,
|
|
|
110 |
skip_connect_type: Literal["add", "concat", "none"] = "concat",
|
111 |
):
|
112 |
super().__init__()
|
|
|
115 |
self.time_embed = TimestepEmbedding(dim)
|
116 |
if text_dim is None:
|
117 |
text_dim = mel_dim
|
118 |
+
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers)
|
|
|
|
|
|
|
119 |
self.input_embed = InputEmbedding(mel_dim, text_dim, dim)
|
120 |
|
121 |
self.rotary_embed = RotaryEmbedding(dim_head)
|
|
|
134 |
|
135 |
attn_norm = RMSNorm(dim)
|
136 |
attn = Attention(
|
137 |
+
processor=AttnProcessor(),
|
138 |
dim=dim,
|
139 |
heads=heads,
|
140 |
dim_head=dim_head,
|
141 |
dropout=dropout,
|
|
|
142 |
)
|
143 |
|
144 |
ff_norm = RMSNorm(dim)
|
|
|
161 |
self.norm_out = RMSNorm(dim)
|
162 |
self.proj_out = nn.Linear(dim, mel_dim)
|
163 |
|
|
|
|
|
|
|
164 |
def forward(
|
165 |
self,
|
166 |
x: float["b n d"], # nosied input audio # noqa: F722
|
|
|
170 |
drop_audio_cond, # cfg for cond audio
|
171 |
drop_text, # cfg for text
|
172 |
mask: bool["b n"] | None = None, # noqa: F722
|
|
|
173 |
):
|
174 |
batch, seq_len = x.shape[0], x.shape[1]
|
175 |
if time.ndim == 0:
|
|
|
177 |
|
178 |
# t: conditioning time, c: context (text + masked cond audio), x: noised input audio
|
179 |
t = self.time_embed(time)
|
180 |
+
text_embed = self.text_embed(text, seq_len, drop_text=drop_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
x = self.input_embed(x, cond, text_embed, drop_audio_cond=drop_audio_cond)
|
182 |
|
183 |
# postfix time t to input x, [b n d] -> [b n+1 d]
|
f5_tts/model/cfm.py
CHANGED
@@ -162,13 +162,13 @@ class CFM(nn.Module):
|
|
162 |
|
163 |
# predict flow
|
164 |
pred = self.transformer(
|
165 |
-
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=False, drop_text=False
|
166 |
)
|
167 |
if cfg_strength < 1e-5:
|
168 |
return pred
|
169 |
|
170 |
null_pred = self.transformer(
|
171 |
-
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=True, drop_text=True
|
172 |
)
|
173 |
return pred + (pred - null_pred) * cfg_strength
|
174 |
|
@@ -195,7 +195,6 @@ class CFM(nn.Module):
|
|
195 |
t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t)
|
196 |
|
197 |
trajectory = odeint(fn, y0, t, **self.odeint_kwargs)
|
198 |
-
self.transformer.clear_cache()
|
199 |
|
200 |
sampled = trajectory[-1]
|
201 |
out = sampled
|
|
|
162 |
|
163 |
# predict flow
|
164 |
pred = self.transformer(
|
165 |
+
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=False, drop_text=False
|
166 |
)
|
167 |
if cfg_strength < 1e-5:
|
168 |
return pred
|
169 |
|
170 |
null_pred = self.transformer(
|
171 |
+
x=x, cond=step_cond, text=text, time=t, mask=mask, drop_audio_cond=True, drop_text=True
|
172 |
)
|
173 |
return pred + (pred - null_pred) * cfg_strength
|
174 |
|
|
|
195 |
t = t + sway_sampling_coef * (torch.cos(torch.pi / 2 * t) - 1 + t)
|
196 |
|
197 |
trajectory = odeint(fn, y0, t, **self.odeint_kwargs)
|
|
|
198 |
|
199 |
sampled = trajectory[-1]
|
200 |
out = sampled
|
f5_tts/model/dataset.py
CHANGED
@@ -173,7 +173,7 @@ class DynamicBatchSampler(Sampler[list[int]]):
|
|
173 |
"""
|
174 |
|
175 |
def __init__(
|
176 |
-
self, sampler: Sampler[int], frames_threshold: int, max_samples=0, random_seed=None,
|
177 |
):
|
178 |
self.sampler = sampler
|
179 |
self.frames_threshold = frames_threshold
|
@@ -208,15 +208,12 @@ class DynamicBatchSampler(Sampler[list[int]]):
|
|
208 |
batch = []
|
209 |
batch_frames = 0
|
210 |
|
211 |
-
if not
|
212 |
batches.append(batch)
|
213 |
|
214 |
del indices
|
215 |
self.batches = batches
|
216 |
|
217 |
-
# Ensure even batches with accelerate BatchSamplerShard cls under frame_per_batch setting
|
218 |
-
self.drop_last = True
|
219 |
-
|
220 |
def set_epoch(self, epoch: int) -> None:
|
221 |
"""Sets the epoch for this sampler."""
|
222 |
self.epoch = epoch
|
@@ -256,7 +253,7 @@ def load_dataset(
|
|
256 |
print("Loading dataset ...")
|
257 |
|
258 |
if dataset_type == "CustomDataset":
|
259 |
-
rel_data_path = str(files("f5_tts").joinpath(f"../../data/{dataset_name}"))
|
260 |
if audio_type == "raw":
|
261 |
try:
|
262 |
train_dataset = load_from_disk(f"{rel_data_path}/raw")
|
|
|
173 |
"""
|
174 |
|
175 |
def __init__(
|
176 |
+
self, sampler: Sampler[int], frames_threshold: int, max_samples=0, random_seed=None, drop_last: bool = False
|
177 |
):
|
178 |
self.sampler = sampler
|
179 |
self.frames_threshold = frames_threshold
|
|
|
208 |
batch = []
|
209 |
batch_frames = 0
|
210 |
|
211 |
+
if not drop_last and len(batch) > 0:
|
212 |
batches.append(batch)
|
213 |
|
214 |
del indices
|
215 |
self.batches = batches
|
216 |
|
|
|
|
|
|
|
217 |
def set_epoch(self, epoch: int) -> None:
|
218 |
"""Sets the epoch for this sampler."""
|
219 |
self.epoch = epoch
|
|
|
253 |
print("Loading dataset ...")
|
254 |
|
255 |
if dataset_type == "CustomDataset":
|
256 |
+
rel_data_path = str(files("f5_tts").joinpath(f"../../data/{dataset_name}_{tokenizer}"))
|
257 |
if audio_type == "raw":
|
258 |
try:
|
259 |
train_dataset = load_from_disk(f"{rel_data_path}/raw")
|
f5_tts/model/modules.py
CHANGED
@@ -269,36 +269,11 @@ class ConvNeXtV2Block(nn.Module):
|
|
269 |
return residual + x
|
270 |
|
271 |
|
272 |
-
#
|
273 |
-
|
274 |
-
|
275 |
-
class RMSNorm(nn.Module):
|
276 |
-
def __init__(self, dim: int, eps: float):
|
277 |
-
super().__init__()
|
278 |
-
self.eps = eps
|
279 |
-
self.weight = nn.Parameter(torch.ones(dim))
|
280 |
-
self.native_rms_norm = float(torch.__version__[:3]) >= 2.4
|
281 |
-
|
282 |
-
def forward(self, x):
|
283 |
-
if self.native_rms_norm:
|
284 |
-
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
285 |
-
x = x.to(self.weight.dtype)
|
286 |
-
x = F.rms_norm(x, normalized_shape=(x.shape[-1],), weight=self.weight, eps=self.eps)
|
287 |
-
else:
|
288 |
-
variance = x.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
289 |
-
x = x * torch.rsqrt(variance + self.eps)
|
290 |
-
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
291 |
-
x = x.to(self.weight.dtype)
|
292 |
-
x = x * self.weight
|
293 |
-
|
294 |
-
return x
|
295 |
-
|
296 |
-
|
297 |
-
# AdaLayerNorm
|
298 |
# return with modulated x for attn input, and params for later mlp modulation
|
299 |
|
300 |
|
301 |
-
class
|
302 |
def __init__(self, dim):
|
303 |
super().__init__()
|
304 |
|
@@ -315,11 +290,11 @@ class AdaLayerNorm(nn.Module):
|
|
315 |
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
316 |
|
317 |
|
318 |
-
#
|
319 |
# return only with modulated x for attn input, cuz no more mlp modulation
|
320 |
|
321 |
|
322 |
-
class
|
323 |
def __init__(self, dim):
|
324 |
super().__init__()
|
325 |
|
@@ -366,8 +341,7 @@ class Attention(nn.Module):
|
|
366 |
dim_head: int = 64,
|
367 |
dropout: float = 0.0,
|
368 |
context_dim: Optional[int] = None, # if not None -> joint attention
|
369 |
-
context_pre_only
|
370 |
-
qk_norm: Optional[str] = None,
|
371 |
):
|
372 |
super().__init__()
|
373 |
|
@@ -388,32 +362,18 @@ class Attention(nn.Module):
|
|
388 |
self.to_k = nn.Linear(dim, self.inner_dim)
|
389 |
self.to_v = nn.Linear(dim, self.inner_dim)
|
390 |
|
391 |
-
if qk_norm is None:
|
392 |
-
self.q_norm = None
|
393 |
-
self.k_norm = None
|
394 |
-
elif qk_norm == "rms_norm":
|
395 |
-
self.q_norm = RMSNorm(dim_head, eps=1e-6)
|
396 |
-
self.k_norm = RMSNorm(dim_head, eps=1e-6)
|
397 |
-
else:
|
398 |
-
raise ValueError(f"Unimplemented qk_norm: {qk_norm}")
|
399 |
-
|
400 |
if self.context_dim is not None:
|
401 |
-
self.to_q_c = nn.Linear(context_dim, self.inner_dim)
|
402 |
self.to_k_c = nn.Linear(context_dim, self.inner_dim)
|
403 |
self.to_v_c = nn.Linear(context_dim, self.inner_dim)
|
404 |
-
if
|
405 |
-
self.
|
406 |
-
self.c_k_norm = None
|
407 |
-
elif qk_norm == "rms_norm":
|
408 |
-
self.c_q_norm = RMSNorm(dim_head, eps=1e-6)
|
409 |
-
self.c_k_norm = RMSNorm(dim_head, eps=1e-6)
|
410 |
|
411 |
self.to_out = nn.ModuleList([])
|
412 |
self.to_out.append(nn.Linear(self.inner_dim, dim))
|
413 |
self.to_out.append(nn.Dropout(dropout))
|
414 |
|
415 |
-
if self.
|
416 |
-
self.to_out_c = nn.Linear(self.inner_dim,
|
417 |
|
418 |
def forward(
|
419 |
self,
|
@@ -433,11 +393,8 @@ class Attention(nn.Module):
|
|
433 |
|
434 |
|
435 |
class AttnProcessor:
|
436 |
-
def __init__(
|
437 |
-
|
438 |
-
pe_attn_head: int | None = None, # number of attention head to apply rope, None for all
|
439 |
-
):
|
440 |
-
self.pe_attn_head = pe_attn_head
|
441 |
|
442 |
def __call__(
|
443 |
self,
|
@@ -448,11 +405,19 @@ class AttnProcessor:
|
|
448 |
) -> torch.FloatTensor:
|
449 |
batch_size = x.shape[0]
|
450 |
|
451 |
-
# `sample` projections
|
452 |
query = attn.to_q(x)
|
453 |
key = attn.to_k(x)
|
454 |
value = attn.to_v(x)
|
455 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
456 |
# attention
|
457 |
inner_dim = key.shape[-1]
|
458 |
head_dim = inner_dim // attn.heads
|
@@ -460,25 +425,6 @@ class AttnProcessor:
|
|
460 |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
461 |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
462 |
|
463 |
-
# qk norm
|
464 |
-
if attn.q_norm is not None:
|
465 |
-
query = attn.q_norm(query)
|
466 |
-
if attn.k_norm is not None:
|
467 |
-
key = attn.k_norm(key)
|
468 |
-
|
469 |
-
# apply rotary position embedding
|
470 |
-
if rope is not None:
|
471 |
-
freqs, xpos_scale = rope
|
472 |
-
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
473 |
-
|
474 |
-
if self.pe_attn_head is not None:
|
475 |
-
pn = self.pe_attn_head
|
476 |
-
query[:, :pn, :, :] = apply_rotary_pos_emb(query[:, :pn, :, :], freqs, q_xpos_scale)
|
477 |
-
key[:, :pn, :, :] = apply_rotary_pos_emb(key[:, :pn, :, :], freqs, k_xpos_scale)
|
478 |
-
else:
|
479 |
-
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
480 |
-
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
481 |
-
|
482 |
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
483 |
if mask is not None:
|
484 |
attn_mask = mask
|
@@ -524,36 +470,16 @@ class JointAttnProcessor:
|
|
524 |
|
525 |
batch_size = c.shape[0]
|
526 |
|
527 |
-
# `sample` projections
|
528 |
query = attn.to_q(x)
|
529 |
key = attn.to_k(x)
|
530 |
value = attn.to_v(x)
|
531 |
|
532 |
-
# `context` projections
|
533 |
c_query = attn.to_q_c(c)
|
534 |
c_key = attn.to_k_c(c)
|
535 |
c_value = attn.to_v_c(c)
|
536 |
|
537 |
-
# attention
|
538 |
-
inner_dim = key.shape[-1]
|
539 |
-
head_dim = inner_dim // attn.heads
|
540 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
541 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
542 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
543 |
-
c_query = c_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
544 |
-
c_key = c_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
545 |
-
c_value = c_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
546 |
-
|
547 |
-
# qk norm
|
548 |
-
if attn.q_norm is not None:
|
549 |
-
query = attn.q_norm(query)
|
550 |
-
if attn.k_norm is not None:
|
551 |
-
key = attn.k_norm(key)
|
552 |
-
if attn.c_q_norm is not None:
|
553 |
-
c_query = attn.c_q_norm(c_query)
|
554 |
-
if attn.c_k_norm is not None:
|
555 |
-
c_key = attn.c_k_norm(c_key)
|
556 |
-
|
557 |
# apply rope for context and noised input independently
|
558 |
if rope is not None:
|
559 |
freqs, xpos_scale = rope
|
@@ -566,10 +492,16 @@ class JointAttnProcessor:
|
|
566 |
c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale)
|
567 |
c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale)
|
568 |
|
569 |
-
#
|
570 |
-
query = torch.cat([query, c_query], dim=
|
571 |
-
key = torch.cat([key, c_key], dim=
|
572 |
-
value = torch.cat([value, c_value], dim=
|
|
|
|
|
|
|
|
|
|
|
|
|
573 |
|
574 |
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
575 |
if mask is not None:
|
@@ -608,17 +540,16 @@ class JointAttnProcessor:
|
|
608 |
|
609 |
|
610 |
class DiTBlock(nn.Module):
|
611 |
-
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1
|
612 |
super().__init__()
|
613 |
|
614 |
-
self.attn_norm =
|
615 |
self.attn = Attention(
|
616 |
-
processor=AttnProcessor(
|
617 |
dim=dim,
|
618 |
heads=heads,
|
619 |
dim_head=dim_head,
|
620 |
dropout=dropout,
|
621 |
-
qk_norm=qk_norm,
|
622 |
)
|
623 |
|
624 |
self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
@@ -654,30 +585,26 @@ class MMDiTBlock(nn.Module):
|
|
654 |
context_pre_only: last layer only do prenorm + modulation cuz no more ffn
|
655 |
"""
|
656 |
|
657 |
-
def __init__(
|
658 |
-
self, dim, heads, dim_head, ff_mult=4, dropout=0.1, context_dim=None, context_pre_only=False, qk_norm=None
|
659 |
-
):
|
660 |
super().__init__()
|
661 |
-
|
662 |
-
context_dim = dim
|
663 |
self.context_pre_only = context_pre_only
|
664 |
|
665 |
-
self.attn_norm_c =
|
666 |
-
self.attn_norm_x =
|
667 |
self.attn = Attention(
|
668 |
processor=JointAttnProcessor(),
|
669 |
dim=dim,
|
670 |
heads=heads,
|
671 |
dim_head=dim_head,
|
672 |
dropout=dropout,
|
673 |
-
context_dim=
|
674 |
context_pre_only=context_pre_only,
|
675 |
-
qk_norm=qk_norm,
|
676 |
)
|
677 |
|
678 |
if not context_pre_only:
|
679 |
-
self.ff_norm_c = nn.LayerNorm(
|
680 |
-
self.ff_c = FeedForward(dim=
|
681 |
else:
|
682 |
self.ff_norm_c = None
|
683 |
self.ff_c = None
|
|
|
269 |
return residual + x
|
270 |
|
271 |
|
272 |
+
# AdaLayerNormZero
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
# return with modulated x for attn input, and params for later mlp modulation
|
274 |
|
275 |
|
276 |
+
class AdaLayerNormZero(nn.Module):
|
277 |
def __init__(self, dim):
|
278 |
super().__init__()
|
279 |
|
|
|
290 |
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
291 |
|
292 |
|
293 |
+
# AdaLayerNormZero for final layer
|
294 |
# return only with modulated x for attn input, cuz no more mlp modulation
|
295 |
|
296 |
|
297 |
+
class AdaLayerNormZero_Final(nn.Module):
|
298 |
def __init__(self, dim):
|
299 |
super().__init__()
|
300 |
|
|
|
341 |
dim_head: int = 64,
|
342 |
dropout: float = 0.0,
|
343 |
context_dim: Optional[int] = None, # if not None -> joint attention
|
344 |
+
context_pre_only=None,
|
|
|
345 |
):
|
346 |
super().__init__()
|
347 |
|
|
|
362 |
self.to_k = nn.Linear(dim, self.inner_dim)
|
363 |
self.to_v = nn.Linear(dim, self.inner_dim)
|
364 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
365 |
if self.context_dim is not None:
|
|
|
366 |
self.to_k_c = nn.Linear(context_dim, self.inner_dim)
|
367 |
self.to_v_c = nn.Linear(context_dim, self.inner_dim)
|
368 |
+
if self.context_pre_only is not None:
|
369 |
+
self.to_q_c = nn.Linear(context_dim, self.inner_dim)
|
|
|
|
|
|
|
|
|
370 |
|
371 |
self.to_out = nn.ModuleList([])
|
372 |
self.to_out.append(nn.Linear(self.inner_dim, dim))
|
373 |
self.to_out.append(nn.Dropout(dropout))
|
374 |
|
375 |
+
if self.context_pre_only is not None and not self.context_pre_only:
|
376 |
+
self.to_out_c = nn.Linear(self.inner_dim, dim)
|
377 |
|
378 |
def forward(
|
379 |
self,
|
|
|
393 |
|
394 |
|
395 |
class AttnProcessor:
|
396 |
+
def __init__(self):
|
397 |
+
pass
|
|
|
|
|
|
|
398 |
|
399 |
def __call__(
|
400 |
self,
|
|
|
405 |
) -> torch.FloatTensor:
|
406 |
batch_size = x.shape[0]
|
407 |
|
408 |
+
# `sample` projections.
|
409 |
query = attn.to_q(x)
|
410 |
key = attn.to_k(x)
|
411 |
value = attn.to_v(x)
|
412 |
|
413 |
+
# apply rotary position embedding
|
414 |
+
if rope is not None:
|
415 |
+
freqs, xpos_scale = rope
|
416 |
+
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0)
|
417 |
+
|
418 |
+
query = apply_rotary_pos_emb(query, freqs, q_xpos_scale)
|
419 |
+
key = apply_rotary_pos_emb(key, freqs, k_xpos_scale)
|
420 |
+
|
421 |
# attention
|
422 |
inner_dim = key.shape[-1]
|
423 |
head_dim = inner_dim // attn.heads
|
|
|
425 |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
426 |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
427 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
429 |
if mask is not None:
|
430 |
attn_mask = mask
|
|
|
470 |
|
471 |
batch_size = c.shape[0]
|
472 |
|
473 |
+
# `sample` projections.
|
474 |
query = attn.to_q(x)
|
475 |
key = attn.to_k(x)
|
476 |
value = attn.to_v(x)
|
477 |
|
478 |
+
# `context` projections.
|
479 |
c_query = attn.to_q_c(c)
|
480 |
c_key = attn.to_k_c(c)
|
481 |
c_value = attn.to_v_c(c)
|
482 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
483 |
# apply rope for context and noised input independently
|
484 |
if rope is not None:
|
485 |
freqs, xpos_scale = rope
|
|
|
492 |
c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale)
|
493 |
c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale)
|
494 |
|
495 |
+
# attention
|
496 |
+
query = torch.cat([query, c_query], dim=1)
|
497 |
+
key = torch.cat([key, c_key], dim=1)
|
498 |
+
value = torch.cat([value, c_value], dim=1)
|
499 |
+
|
500 |
+
inner_dim = key.shape[-1]
|
501 |
+
head_dim = inner_dim // attn.heads
|
502 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
503 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
504 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
505 |
|
506 |
# mask. e.g. inference got a batch with different target durations, mask out the padding
|
507 |
if mask is not None:
|
|
|
540 |
|
541 |
|
542 |
class DiTBlock(nn.Module):
|
543 |
+
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1):
|
544 |
super().__init__()
|
545 |
|
546 |
+
self.attn_norm = AdaLayerNormZero(dim)
|
547 |
self.attn = Attention(
|
548 |
+
processor=AttnProcessor(),
|
549 |
dim=dim,
|
550 |
heads=heads,
|
551 |
dim_head=dim_head,
|
552 |
dropout=dropout,
|
|
|
553 |
)
|
554 |
|
555 |
self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
|
|
585 |
context_pre_only: last layer only do prenorm + modulation cuz no more ffn
|
586 |
"""
|
587 |
|
588 |
+
def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1, context_pre_only=False):
|
|
|
|
|
589 |
super().__init__()
|
590 |
+
|
|
|
591 |
self.context_pre_only = context_pre_only
|
592 |
|
593 |
+
self.attn_norm_c = AdaLayerNormZero_Final(dim) if context_pre_only else AdaLayerNormZero(dim)
|
594 |
+
self.attn_norm_x = AdaLayerNormZero(dim)
|
595 |
self.attn = Attention(
|
596 |
processor=JointAttnProcessor(),
|
597 |
dim=dim,
|
598 |
heads=heads,
|
599 |
dim_head=dim_head,
|
600 |
dropout=dropout,
|
601 |
+
context_dim=dim,
|
602 |
context_pre_only=context_pre_only,
|
|
|
603 |
)
|
604 |
|
605 |
if not context_pre_only:
|
606 |
+
self.ff_norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
607 |
+
self.ff_c = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh")
|
608 |
else:
|
609 |
self.ff_norm_c = None
|
610 |
self.ff_c = None
|
f5_tts/model/trainer.py
CHANGED
@@ -32,7 +32,7 @@ class Trainer:
|
|
32 |
save_per_updates=1000,
|
33 |
keep_last_n_checkpoints: int = -1, # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
|
34 |
checkpoint_path=None,
|
35 |
-
|
36 |
batch_size_type: str = "sample",
|
37 |
max_samples=32,
|
38 |
grad_accumulation_steps=1,
|
@@ -40,7 +40,7 @@ class Trainer:
|
|
40 |
noise_scheduler: str | None = None,
|
41 |
duration_predictor: torch.nn.Module | None = None,
|
42 |
logger: str | None = "wandb", # "wandb" | "tensorboard" | None
|
43 |
-
wandb_project="
|
44 |
wandb_run_name="test_run",
|
45 |
wandb_resume_id: str = None,
|
46 |
log_samples: bool = False,
|
@@ -51,7 +51,6 @@ class Trainer:
|
|
51 |
mel_spec_type: str = "vocos", # "vocos" | "bigvgan"
|
52 |
is_local_vocoder: bool = False, # use local path vocoder
|
53 |
local_vocoder_path: str = "", # local vocoder path
|
54 |
-
cfg_dict: dict = dict(), # training config
|
55 |
):
|
56 |
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
57 |
|
@@ -73,23 +72,21 @@ class Trainer:
|
|
73 |
else:
|
74 |
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
|
75 |
|
76 |
-
|
77 |
-
|
|
|
|
|
78 |
"epochs": epochs,
|
79 |
"learning_rate": learning_rate,
|
80 |
"num_warmup_updates": num_warmup_updates,
|
81 |
-
"
|
82 |
"batch_size_type": batch_size_type,
|
83 |
"max_samples": max_samples,
|
84 |
"grad_accumulation_steps": grad_accumulation_steps,
|
85 |
"max_grad_norm": max_grad_norm,
|
|
|
86 |
"noise_scheduler": noise_scheduler,
|
87 |
-
}
|
88 |
-
cfg_dict["gpus"] = self.accelerator.num_processes
|
89 |
-
self.accelerator.init_trackers(
|
90 |
-
project_name=wandb_project,
|
91 |
-
init_kwargs=init_kwargs,
|
92 |
-
config=cfg_dict,
|
93 |
)
|
94 |
|
95 |
elif self.logger == "tensorboard":
|
@@ -114,9 +111,9 @@ class Trainer:
|
|
114 |
self.save_per_updates = save_per_updates
|
115 |
self.keep_last_n_checkpoints = keep_last_n_checkpoints
|
116 |
self.last_per_updates = default(last_per_updates, save_per_updates)
|
117 |
-
self.checkpoint_path = default(checkpoint_path, "ckpts/
|
118 |
|
119 |
-
self.
|
120 |
self.batch_size_type = batch_size_type
|
121 |
self.max_samples = max_samples
|
122 |
self.grad_accumulation_steps = grad_accumulation_steps
|
@@ -182,7 +179,7 @@ class Trainer:
|
|
182 |
if (
|
183 |
not exists(self.checkpoint_path)
|
184 |
or not os.path.exists(self.checkpoint_path)
|
185 |
-
or not any(filename.endswith(
|
186 |
):
|
187 |
return 0
|
188 |
|
@@ -194,7 +191,7 @@ class Trainer:
|
|
194 |
all_checkpoints = [
|
195 |
f
|
196 |
for f in os.listdir(self.checkpoint_path)
|
197 |
-
if (f.startswith("model_") or f.startswith("pretrained_")) and f.endswith(
|
198 |
]
|
199 |
|
200 |
# First try to find regular training checkpoints
|
@@ -208,16 +205,8 @@ class Trainer:
|
|
208 |
# If no training checkpoints, use pretrained model
|
209 |
latest_checkpoint = next(f for f in all_checkpoints if f.startswith("pretrained_"))
|
210 |
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
checkpoint = load_file(f"{self.checkpoint_path}/{latest_checkpoint}", device="cpu")
|
215 |
-
checkpoint = {"ema_model_state_dict": checkpoint}
|
216 |
-
elif latest_checkpoint.endswith(".pt"):
|
217 |
-
# checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device) # rather use accelerator.load_state ಥ_ಥ
|
218 |
-
checkpoint = torch.load(
|
219 |
-
f"{self.checkpoint_path}/{latest_checkpoint}", weights_only=True, map_location="cpu"
|
220 |
-
)
|
221 |
|
222 |
# patch for backward compatibility, 305e3ea
|
223 |
for key in ["ema_model.mel_spec.mel_stft.mel_scale.fb", "ema_model.mel_spec.mel_stft.spectrogram.window"]:
|
@@ -282,7 +271,7 @@ class Trainer:
|
|
282 |
num_workers=num_workers,
|
283 |
pin_memory=True,
|
284 |
persistent_workers=True,
|
285 |
-
batch_size=self.
|
286 |
shuffle=True,
|
287 |
generator=generator,
|
288 |
)
|
@@ -291,10 +280,10 @@ class Trainer:
|
|
291 |
sampler = SequentialSampler(train_dataset)
|
292 |
batch_sampler = DynamicBatchSampler(
|
293 |
sampler,
|
294 |
-
self.
|
295 |
max_samples=self.max_samples,
|
296 |
random_seed=resumable_with_seed, # This enables reproducible shuffling
|
297 |
-
|
298 |
)
|
299 |
train_dataloader = DataLoader(
|
300 |
train_dataset,
|
|
|
32 |
save_per_updates=1000,
|
33 |
keep_last_n_checkpoints: int = -1, # -1 to keep all, 0 to not save intermediate, > 0 to keep last N checkpoints
|
34 |
checkpoint_path=None,
|
35 |
+
batch_size=32,
|
36 |
batch_size_type: str = "sample",
|
37 |
max_samples=32,
|
38 |
grad_accumulation_steps=1,
|
|
|
40 |
noise_scheduler: str | None = None,
|
41 |
duration_predictor: torch.nn.Module | None = None,
|
42 |
logger: str | None = "wandb", # "wandb" | "tensorboard" | None
|
43 |
+
wandb_project="test_e2-tts",
|
44 |
wandb_run_name="test_run",
|
45 |
wandb_resume_id: str = None,
|
46 |
log_samples: bool = False,
|
|
|
51 |
mel_spec_type: str = "vocos", # "vocos" | "bigvgan"
|
52 |
is_local_vocoder: bool = False, # use local path vocoder
|
53 |
local_vocoder_path: str = "", # local vocoder path
|
|
|
54 |
):
|
55 |
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
56 |
|
|
|
72 |
else:
|
73 |
init_kwargs = {"wandb": {"resume": "allow", "name": wandb_run_name}}
|
74 |
|
75 |
+
self.accelerator.init_trackers(
|
76 |
+
project_name=wandb_project,
|
77 |
+
init_kwargs=init_kwargs,
|
78 |
+
config={
|
79 |
"epochs": epochs,
|
80 |
"learning_rate": learning_rate,
|
81 |
"num_warmup_updates": num_warmup_updates,
|
82 |
+
"batch_size": batch_size,
|
83 |
"batch_size_type": batch_size_type,
|
84 |
"max_samples": max_samples,
|
85 |
"grad_accumulation_steps": grad_accumulation_steps,
|
86 |
"max_grad_norm": max_grad_norm,
|
87 |
+
"gpus": self.accelerator.num_processes,
|
88 |
"noise_scheduler": noise_scheduler,
|
89 |
+
},
|
|
|
|
|
|
|
|
|
|
|
90 |
)
|
91 |
|
92 |
elif self.logger == "tensorboard":
|
|
|
111 |
self.save_per_updates = save_per_updates
|
112 |
self.keep_last_n_checkpoints = keep_last_n_checkpoints
|
113 |
self.last_per_updates = default(last_per_updates, save_per_updates)
|
114 |
+
self.checkpoint_path = default(checkpoint_path, "ckpts/test_e2-tts")
|
115 |
|
116 |
+
self.batch_size = batch_size
|
117 |
self.batch_size_type = batch_size_type
|
118 |
self.max_samples = max_samples
|
119 |
self.grad_accumulation_steps = grad_accumulation_steps
|
|
|
179 |
if (
|
180 |
not exists(self.checkpoint_path)
|
181 |
or not os.path.exists(self.checkpoint_path)
|
182 |
+
or not any(filename.endswith(".pt") for filename in os.listdir(self.checkpoint_path))
|
183 |
):
|
184 |
return 0
|
185 |
|
|
|
191 |
all_checkpoints = [
|
192 |
f
|
193 |
for f in os.listdir(self.checkpoint_path)
|
194 |
+
if (f.startswith("model_") or f.startswith("pretrained_")) and f.endswith(".pt")
|
195 |
]
|
196 |
|
197 |
# First try to find regular training checkpoints
|
|
|
205 |
# If no training checkpoints, use pretrained model
|
206 |
latest_checkpoint = next(f for f in all_checkpoints if f.startswith("pretrained_"))
|
207 |
|
208 |
+
# checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", map_location=self.accelerator.device) # rather use accelerator.load_state ಥ_ಥ
|
209 |
+
checkpoint = torch.load(f"{self.checkpoint_path}/{latest_checkpoint}", weights_only=True, map_location="cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
# patch for backward compatibility, 305e3ea
|
212 |
for key in ["ema_model.mel_spec.mel_stft.mel_scale.fb", "ema_model.mel_spec.mel_stft.spectrogram.window"]:
|
|
|
271 |
num_workers=num_workers,
|
272 |
pin_memory=True,
|
273 |
persistent_workers=True,
|
274 |
+
batch_size=self.batch_size,
|
275 |
shuffle=True,
|
276 |
generator=generator,
|
277 |
)
|
|
|
280 |
sampler = SequentialSampler(train_dataset)
|
281 |
batch_sampler = DynamicBatchSampler(
|
282 |
sampler,
|
283 |
+
self.batch_size,
|
284 |
max_samples=self.max_samples,
|
285 |
random_seed=resumable_with_seed, # This enables reproducible shuffling
|
286 |
+
drop_last=False,
|
287 |
)
|
288 |
train_dataloader = DataLoader(
|
289 |
train_dataset,
|
f5_tts/model/utils.py
CHANGED
@@ -109,7 +109,7 @@ def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
|
|
109 |
- if use "byte", set to 256 (unicode byte range)
|
110 |
"""
|
111 |
if tokenizer in ["pinyin", "char"]:
|
112 |
-
tokenizer_path = os.path.join(files("f5_tts").joinpath("../../data"), f"{dataset_name}/vocab.txt")
|
113 |
with open(tokenizer_path, "r", encoding="utf-8") as f:
|
114 |
vocab_char_map = {}
|
115 |
for i, char in enumerate(f):
|
@@ -133,12 +133,22 @@ def get_tokenizer(dataset_name, tokenizer: str = "pinyin"):
|
|
133 |
|
134 |
# convert char to pinyin
|
135 |
|
|
|
|
|
136 |
|
137 |
-
def convert_char_to_pinyin(text_list, polyphone=True):
|
138 |
-
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
|
|
142 |
final_text_list = []
|
143 |
custom_trans = str.maketrans(
|
144 |
{";": ",", "“": '"', "”": '"', "‘": "'", "’": "'"}
|
@@ -174,13 +184,11 @@ def convert_char_to_pinyin(text_list, polyphone=True):
|
|
174 |
else:
|
175 |
char_list.append(c)
|
176 |
final_text_list.append(char_list)
|
177 |
-
|
178 |
return final_text_list
|
179 |
|
180 |
-
|
181 |
# filter func for dirty data with many repetitions
|
182 |
|
183 |
-
|
184 |
def repetition_found(text, length=2, tolerance=10):
|
185 |
pattern_count = defaultdict(int)
|
186 |
for i in range(len(text) - length + 1):
|
|
|
109 |
- if use "byte", set to 256 (unicode byte range)
|
110 |
"""
|
111 |
if tokenizer in ["pinyin", "char"]:
|
112 |
+
tokenizer_path = os.path.join(files("f5_tts").joinpath("../../data"), f"{dataset_name}_{tokenizer}/vocab.txt")
|
113 |
with open(tokenizer_path, "r", encoding="utf-8") as f:
|
114 |
vocab_char_map = {}
|
115 |
for i, char in enumerate(f):
|
|
|
133 |
|
134 |
# convert char to pinyin
|
135 |
|
136 |
+
jieba.initialize()
|
137 |
+
print("Word segmentation module jieba initialized.\n")
|
138 |
|
139 |
+
# def convert_char_to_pinyin(text_list, polyphone=True):
|
140 |
+
# final_text_list = []
|
141 |
+
# for text in text_list:
|
142 |
+
# char_list = [char for char in text if char not in "。,、;:?!《》【】—…:;\"()[]{}"]
|
143 |
+
# final_text_list.append(char_list)
|
144 |
+
# # print(final_text_list)
|
145 |
+
# return final_text_list
|
146 |
+
|
147 |
+
# def convert_char_to_pinyin(text_list, polyphone=True):
|
148 |
+
# final_text_list = [char for char in text_list if char not in "。,、;:?!《》【】—…:;?!\"()[]{}"]
|
149 |
+
# return final_text_list
|
150 |
|
151 |
+
def convert_char_to_pinyin(text_list, polyphone=True):
|
152 |
final_text_list = []
|
153 |
custom_trans = str.maketrans(
|
154 |
{";": ",", "“": '"', "”": '"', "‘": "'", "’": "'"}
|
|
|
184 |
else:
|
185 |
char_list.append(c)
|
186 |
final_text_list.append(char_list)
|
187 |
+
# print(final_text_list)
|
188 |
return final_text_list
|
189 |
|
|
|
190 |
# filter func for dirty data with many repetitions
|
191 |
|
|
|
192 |
def repetition_found(text, length=2, tolerance=10):
|
193 |
pattern_count = defaultdict(int)
|
194 |
for i in range(len(text) - length + 1):
|
f5_tts/scripts/count_max_epoch.py
CHANGED
@@ -9,7 +9,7 @@ mel_hop_length = 256
|
|
9 |
mel_sampling_rate = 24000
|
10 |
|
11 |
# target
|
12 |
-
wanted_max_updates =
|
13 |
|
14 |
# train params
|
15 |
gpus = 8
|
|
|
9 |
mel_sampling_rate = 24000
|
10 |
|
11 |
# target
|
12 |
+
wanted_max_updates = 1000000
|
13 |
|
14 |
# train params
|
15 |
gpus = 8
|
f5_tts/socket_client.py
DELETED
@@ -1,61 +0,0 @@
|
|
1 |
-
import socket
|
2 |
-
import asyncio
|
3 |
-
import pyaudio
|
4 |
-
import numpy as np
|
5 |
-
import logging
|
6 |
-
import time
|
7 |
-
|
8 |
-
logging.basicConfig(level=logging.INFO)
|
9 |
-
logger = logging.getLogger(__name__)
|
10 |
-
|
11 |
-
|
12 |
-
async def listen_to_F5TTS(text, server_ip="localhost", server_port=9998):
|
13 |
-
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
14 |
-
await asyncio.get_event_loop().run_in_executor(None, client_socket.connect, (server_ip, int(server_port)))
|
15 |
-
|
16 |
-
start_time = time.time()
|
17 |
-
first_chunk_time = None
|
18 |
-
|
19 |
-
async def play_audio_stream():
|
20 |
-
nonlocal first_chunk_time
|
21 |
-
p = pyaudio.PyAudio()
|
22 |
-
stream = p.open(format=pyaudio.paFloat32, channels=1, rate=24000, output=True, frames_per_buffer=2048)
|
23 |
-
|
24 |
-
try:
|
25 |
-
while True:
|
26 |
-
data = await asyncio.get_event_loop().run_in_executor(None, client_socket.recv, 8192)
|
27 |
-
if not data:
|
28 |
-
break
|
29 |
-
if data == b"END":
|
30 |
-
logger.info("End of audio received.")
|
31 |
-
break
|
32 |
-
|
33 |
-
audio_array = np.frombuffer(data, dtype=np.float32)
|
34 |
-
stream.write(audio_array.tobytes())
|
35 |
-
|
36 |
-
if first_chunk_time is None:
|
37 |
-
first_chunk_time = time.time()
|
38 |
-
|
39 |
-
finally:
|
40 |
-
stream.stop_stream()
|
41 |
-
stream.close()
|
42 |
-
p.terminate()
|
43 |
-
|
44 |
-
logger.info(f"Total time taken: {time.time() - start_time:.4f} seconds")
|
45 |
-
|
46 |
-
try:
|
47 |
-
data_to_send = f"{text}".encode("utf-8")
|
48 |
-
await asyncio.get_event_loop().run_in_executor(None, client_socket.sendall, data_to_send)
|
49 |
-
await play_audio_stream()
|
50 |
-
|
51 |
-
except Exception as e:
|
52 |
-
logger.error(f"Error in listen_to_F5TTS: {e}")
|
53 |
-
|
54 |
-
finally:
|
55 |
-
client_socket.close()
|
56 |
-
|
57 |
-
|
58 |
-
if __name__ == "__main__":
|
59 |
-
text_to_send = "As a Reader assistant, I'm familiar with new technology. which are key to its improved performance in terms of both training speed and inference efficiency. Let's break down the components"
|
60 |
-
|
61 |
-
asyncio.run(listen_to_F5TTS(text_to_send))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
f5_tts/socket_server.py
CHANGED
@@ -1,75 +1,21 @@
|
|
1 |
import argparse
|
2 |
import gc
|
3 |
-
import logging
|
4 |
-
import numpy as np
|
5 |
-
import queue
|
6 |
import socket
|
7 |
import struct
|
8 |
-
import
|
|
|
9 |
import traceback
|
10 |
-
import wave
|
11 |
from importlib.resources import files
|
|
|
12 |
|
13 |
-
import
|
14 |
-
|
15 |
-
from
|
16 |
-
from
|
17 |
-
|
18 |
-
from f5_tts.model.backbones.dit import DiT # noqa: F401. used for config
|
19 |
-
from f5_tts.infer.utils_infer import (
|
20 |
-
chunk_text,
|
21 |
-
preprocess_ref_audio_text,
|
22 |
-
load_vocoder,
|
23 |
-
load_model,
|
24 |
-
infer_batch_process,
|
25 |
-
)
|
26 |
-
|
27 |
-
logging.basicConfig(level=logging.INFO)
|
28 |
-
logger = logging.getLogger(__name__)
|
29 |
-
|
30 |
-
|
31 |
-
class AudioFileWriterThread(threading.Thread):
|
32 |
-
"""Threaded file writer to avoid blocking the TTS streaming process."""
|
33 |
-
|
34 |
-
def __init__(self, output_file, sampling_rate):
|
35 |
-
super().__init__()
|
36 |
-
self.output_file = output_file
|
37 |
-
self.sampling_rate = sampling_rate
|
38 |
-
self.queue = queue.Queue()
|
39 |
-
self.stop_event = threading.Event()
|
40 |
-
self.audio_data = []
|
41 |
-
|
42 |
-
def run(self):
|
43 |
-
"""Process queued audio data and write it to a file."""
|
44 |
-
logger.info("AudioFileWriterThread started.")
|
45 |
-
with wave.open(self.output_file, "wb") as wf:
|
46 |
-
wf.setnchannels(1)
|
47 |
-
wf.setsampwidth(2)
|
48 |
-
wf.setframerate(self.sampling_rate)
|
49 |
-
|
50 |
-
while not self.stop_event.is_set() or not self.queue.empty():
|
51 |
-
try:
|
52 |
-
chunk = self.queue.get(timeout=0.1)
|
53 |
-
if chunk is not None:
|
54 |
-
chunk = np.int16(chunk * 32767)
|
55 |
-
self.audio_data.append(chunk)
|
56 |
-
wf.writeframes(chunk.tobytes())
|
57 |
-
except queue.Empty:
|
58 |
-
continue
|
59 |
-
|
60 |
-
def add_chunk(self, chunk):
|
61 |
-
"""Add a new chunk to the queue."""
|
62 |
-
self.queue.put(chunk)
|
63 |
-
|
64 |
-
def stop(self):
|
65 |
-
"""Stop writing and ensure all queued data is written."""
|
66 |
-
self.stop_event.set()
|
67 |
-
self.join()
|
68 |
-
logger.info("Audio writing completed.")
|
69 |
|
70 |
|
71 |
class TTSStreamingProcessor:
|
72 |
-
def __init__(self,
|
73 |
self.device = device or (
|
74 |
"cuda"
|
75 |
if torch.cuda.is_available()
|
@@ -79,135 +25,124 @@ class TTSStreamingProcessor:
|
|
79 |
if torch.backends.mps.is_available()
|
80 |
else "cpu"
|
81 |
)
|
82 |
-
model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{model}.yaml")))
|
83 |
-
self.model_cls = globals()[model_cfg.model.backbone]
|
84 |
-
self.model_arc = model_cfg.model.arch
|
85 |
-
self.mel_spec_type = model_cfg.model.mel_spec.mel_spec_type
|
86 |
-
self.sampling_rate = model_cfg.model.mel_spec.target_sample_rate
|
87 |
-
|
88 |
-
self.model = self.load_ema_model(ckpt_file, vocab_file, dtype)
|
89 |
-
self.vocoder = self.load_vocoder_model()
|
90 |
-
|
91 |
-
self.update_reference(ref_audio, ref_text)
|
92 |
-
self._warm_up()
|
93 |
-
self.file_writer_thread = None
|
94 |
-
self.first_package = True
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
ckpt_path=ckpt_file,
|
101 |
-
mel_spec_type=
|
102 |
vocab_file=vocab_file,
|
103 |
ode_method="euler",
|
104 |
use_ema=True,
|
105 |
device=self.device,
|
106 |
).to(self.device, dtype=dtype)
|
107 |
|
108 |
-
|
109 |
-
|
110 |
|
111 |
-
|
112 |
-
self.
|
113 |
-
self.audio, self.sr = torchaudio.load(self.ref_audio)
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
self.
|
118 |
-
|
119 |
-
|
|
|
120 |
|
121 |
def _warm_up(self):
|
122 |
-
|
|
|
|
|
|
|
123 |
gen_text = "Warm-up text for the model."
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
self.first_package = False
|
143 |
-
|
144 |
-
audio_stream = infer_batch_process(
|
145 |
-
(self.audio, self.sr),
|
146 |
-
self.ref_text,
|
147 |
-
text_batches,
|
148 |
self.model,
|
149 |
self.vocoder,
|
150 |
-
|
151 |
-
device=self.device,
|
152 |
-
streaming=True,
|
153 |
-
chunk_size=2048,
|
154 |
)
|
155 |
|
156 |
-
#
|
157 |
-
|
158 |
-
self.file_writer_thread.stop()
|
159 |
-
self.file_writer_thread = AudioFileWriterThread("output.wav", self.sampling_rate)
|
160 |
-
self.file_writer_thread.start()
|
161 |
-
|
162 |
-
for audio_chunk, _ in audio_stream:
|
163 |
-
if len(audio_chunk) > 0:
|
164 |
-
logger.info(f"Generated audio chunk of size: {len(audio_chunk)}")
|
165 |
|
166 |
-
|
167 |
-
|
|
|
|
|
168 |
|
169 |
-
|
170 |
-
|
171 |
|
172 |
-
|
173 |
-
|
|
|
174 |
|
175 |
-
|
176 |
-
|
|
|
|
|
177 |
|
178 |
|
179 |
-
def handle_client(
|
180 |
try:
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
except Exception as e:
|
198 |
-
|
199 |
traceback.print_exc()
|
|
|
|
|
200 |
|
201 |
|
202 |
def start_server(host, port, processor):
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
|
|
|
|
211 |
|
212 |
|
213 |
if __name__ == "__main__":
|
@@ -216,14 +151,9 @@ if __name__ == "__main__":
|
|
216 |
parser.add_argument("--host", default="0.0.0.0")
|
217 |
parser.add_argument("--port", default=9998)
|
218 |
|
219 |
-
parser.add_argument(
|
220 |
-
"--model",
|
221 |
-
default="F5TTS_v1_Base",
|
222 |
-
help="The model name, e.g. F5TTS_v1_Base",
|
223 |
-
)
|
224 |
parser.add_argument(
|
225 |
"--ckpt_file",
|
226 |
-
default=str(
|
227 |
help="Path to the model checkpoint file",
|
228 |
)
|
229 |
parser.add_argument(
|
@@ -251,7 +181,6 @@ if __name__ == "__main__":
|
|
251 |
try:
|
252 |
# Initialize the processor with the model and vocoder
|
253 |
processor = TTSStreamingProcessor(
|
254 |
-
model=args.model,
|
255 |
ckpt_file=args.ckpt_file,
|
256 |
vocab_file=args.vocab_file,
|
257 |
ref_audio=args.ref_audio,
|
|
|
1 |
import argparse
|
2 |
import gc
|
|
|
|
|
|
|
3 |
import socket
|
4 |
import struct
|
5 |
+
import torch
|
6 |
+
import torchaudio
|
7 |
import traceback
|
|
|
8 |
from importlib.resources import files
|
9 |
+
from threading import Thread
|
10 |
|
11 |
+
from cached_path import cached_path
|
12 |
+
|
13 |
+
from infer.utils_infer import infer_batch_process, preprocess_ref_audio_text, load_vocoder, load_model
|
14 |
+
from model.backbones.dit import DiT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
|
17 |
class TTSStreamingProcessor:
|
18 |
+
def __init__(self, ckpt_file, vocab_file, ref_audio, ref_text, device=None, dtype=torch.float32):
|
19 |
self.device = device or (
|
20 |
"cuda"
|
21 |
if torch.cuda.is_available()
|
|
|
25 |
if torch.backends.mps.is_available()
|
26 |
else "cpu"
|
27 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
# Load the model using the provided checkpoint and vocab files
|
30 |
+
self.model = load_model(
|
31 |
+
model_cls=DiT,
|
32 |
+
model_cfg=dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4),
|
33 |
ckpt_path=ckpt_file,
|
34 |
+
mel_spec_type="vocos", # or "bigvgan" depending on vocoder
|
35 |
vocab_file=vocab_file,
|
36 |
ode_method="euler",
|
37 |
use_ema=True,
|
38 |
device=self.device,
|
39 |
).to(self.device, dtype=dtype)
|
40 |
|
41 |
+
# Load the vocoder
|
42 |
+
self.vocoder = load_vocoder(is_local=False)
|
43 |
|
44 |
+
# Set sampling rate for streaming
|
45 |
+
self.sampling_rate = 24000 # Consistency with client
|
|
|
46 |
|
47 |
+
# Set reference audio and text
|
48 |
+
self.ref_audio = ref_audio
|
49 |
+
self.ref_text = ref_text
|
50 |
+
|
51 |
+
# Warm up the model
|
52 |
+
self._warm_up()
|
53 |
|
54 |
def _warm_up(self):
|
55 |
+
"""Warm up the model with a dummy input to ensure it's ready for real-time processing."""
|
56 |
+
print("Warming up the model...")
|
57 |
+
ref_audio, ref_text = preprocess_ref_audio_text(self.ref_audio, self.ref_text)
|
58 |
+
audio, sr = torchaudio.load(ref_audio)
|
59 |
gen_text = "Warm-up text for the model."
|
60 |
+
|
61 |
+
# Pass the vocoder as an argument here
|
62 |
+
infer_batch_process((audio, sr), ref_text, [gen_text], self.model, self.vocoder, device=self.device)
|
63 |
+
print("Warm-up completed.")
|
64 |
+
|
65 |
+
def generate_stream(self, text, play_steps_in_s=0.5):
|
66 |
+
"""Generate audio in chunks and yield them in real-time."""
|
67 |
+
# Preprocess the reference audio and text
|
68 |
+
ref_audio, ref_text = preprocess_ref_audio_text(self.ref_audio, self.ref_text)
|
69 |
+
|
70 |
+
# Load reference audio
|
71 |
+
audio, sr = torchaudio.load(ref_audio)
|
72 |
+
|
73 |
+
# Run inference for the input text
|
74 |
+
audio_chunk, final_sample_rate, _ = infer_batch_process(
|
75 |
+
(audio, sr),
|
76 |
+
ref_text,
|
77 |
+
[text],
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
self.model,
|
79 |
self.vocoder,
|
80 |
+
device=self.device, # Pass vocoder here
|
|
|
|
|
|
|
81 |
)
|
82 |
|
83 |
+
# Break the generated audio into chunks and send them
|
84 |
+
chunk_size = int(final_sample_rate * play_steps_in_s)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
if len(audio_chunk) < chunk_size:
|
87 |
+
packed_audio = struct.pack(f"{len(audio_chunk)}f", *audio_chunk)
|
88 |
+
yield packed_audio
|
89 |
+
return
|
90 |
|
91 |
+
for i in range(0, len(audio_chunk), chunk_size):
|
92 |
+
chunk = audio_chunk[i : i + chunk_size]
|
93 |
|
94 |
+
# Check if it's the final chunk
|
95 |
+
if i + chunk_size >= len(audio_chunk):
|
96 |
+
chunk = audio_chunk[i:]
|
97 |
|
98 |
+
# Send the chunk if it is not empty
|
99 |
+
if len(chunk) > 0:
|
100 |
+
packed_audio = struct.pack(f"{len(chunk)}f", *chunk)
|
101 |
+
yield packed_audio
|
102 |
|
103 |
|
104 |
+
def handle_client(client_socket, processor):
|
105 |
try:
|
106 |
+
while True:
|
107 |
+
# Receive data from the client
|
108 |
+
data = client_socket.recv(1024).decode("utf-8")
|
109 |
+
if not data:
|
110 |
+
break
|
111 |
+
|
112 |
+
try:
|
113 |
+
# The client sends the text input
|
114 |
+
text = data.strip()
|
115 |
+
|
116 |
+
# Generate and stream audio chunks
|
117 |
+
for audio_chunk in processor.generate_stream(text):
|
118 |
+
client_socket.sendall(audio_chunk)
|
119 |
+
|
120 |
+
# Send end-of-audio signal
|
121 |
+
client_socket.sendall(b"END_OF_AUDIO")
|
122 |
+
|
123 |
+
except Exception as inner_e:
|
124 |
+
print(f"Error during processing: {inner_e}")
|
125 |
+
traceback.print_exc() # Print the full traceback to diagnose the issue
|
126 |
+
break
|
127 |
+
|
128 |
except Exception as e:
|
129 |
+
print(f"Error handling client: {e}")
|
130 |
traceback.print_exc()
|
131 |
+
finally:
|
132 |
+
client_socket.close()
|
133 |
|
134 |
|
135 |
def start_server(host, port, processor):
|
136 |
+
server = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
137 |
+
server.bind((host, port))
|
138 |
+
server.listen(5)
|
139 |
+
print(f"Server listening on {host}:{port}")
|
140 |
+
|
141 |
+
while True:
|
142 |
+
client_socket, addr = server.accept()
|
143 |
+
print(f"Accepted connection from {addr}")
|
144 |
+
client_handler = Thread(target=handle_client, args=(client_socket, processor))
|
145 |
+
client_handler.start()
|
146 |
|
147 |
|
148 |
if __name__ == "__main__":
|
|
|
151 |
parser.add_argument("--host", default="0.0.0.0")
|
152 |
parser.add_argument("--port", default=9998)
|
153 |
|
|
|
|
|
|
|
|
|
|
|
154 |
parser.add_argument(
|
155 |
"--ckpt_file",
|
156 |
+
default=str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.safetensors")),
|
157 |
help="Path to the model checkpoint file",
|
158 |
)
|
159 |
parser.add_argument(
|
|
|
181 |
try:
|
182 |
# Initialize the processor with the model and vocoder
|
183 |
processor = TTSStreamingProcessor(
|
|
|
184 |
ckpt_file=args.ckpt_file,
|
185 |
vocab_file=args.vocab_file,
|
186 |
ref_audio=args.ref_audio,
|
f5_tts/train/README.md
CHANGED
@@ -40,10 +40,10 @@ Once your datasets are prepared, you can start the training process.
|
|
40 |
accelerate config
|
41 |
|
42 |
# .yaml files are under src/f5_tts/configs directory
|
43 |
-
accelerate launch src/f5_tts/train/train.py --config-name
|
44 |
|
45 |
# possible to overwrite accelerate and hydra config
|
46 |
-
accelerate launch --mixed_precision=fp16 src/f5_tts/train/train.py --config-name
|
47 |
```
|
48 |
|
49 |
### 2. Finetuning practice
|
@@ -53,7 +53,7 @@ Gradio UI training/finetuning with `src/f5_tts/train/finetune_gradio.py` see [#1
|
|
53 |
|
54 |
The `use_ema = True` is harmful for early-stage finetuned checkpoints (which goes just few updates, thus ema weights still dominated by pretrained ones), try turn it off and see if provide better results.
|
55 |
|
56 |
-
### 3.
|
57 |
|
58 |
The `wandb/` dir will be created under path you run training/finetuning scripts.
|
59 |
|
@@ -62,7 +62,7 @@ By default, the training script does NOT use logging (assuming you didn't manual
|
|
62 |
To turn on wandb logging, you can either:
|
63 |
|
64 |
1. Manually login with `wandb login`: Learn more [here](https://docs.wandb.ai/ref/cli/wandb-login)
|
65 |
-
2. Automatically login programmatically by setting an environment variable: Get an API KEY at https://wandb.ai/
|
66 |
|
67 |
On Mac & Linux:
|
68 |
|
@@ -75,7 +75,7 @@ On Windows:
|
|
75 |
```
|
76 |
set WANDB_API_KEY=<YOUR WANDB API KEY>
|
77 |
```
|
78 |
-
Moreover, if you couldn't access
|
79 |
|
80 |
```
|
81 |
export WANDB_MODE=offline
|
|
|
40 |
accelerate config
|
41 |
|
42 |
# .yaml files are under src/f5_tts/configs directory
|
43 |
+
accelerate launch src/f5_tts/train/train.py --config-name F5TTS_Base_train.yaml
|
44 |
|
45 |
# possible to overwrite accelerate and hydra config
|
46 |
+
accelerate launch --mixed_precision=fp16 src/f5_tts/train/train.py --config-name F5TTS_Small_train.yaml ++datasets.batch_size_per_gpu=19200
|
47 |
```
|
48 |
|
49 |
### 2. Finetuning practice
|
|
|
53 |
|
54 |
The `use_ema = True` is harmful for early-stage finetuned checkpoints (which goes just few updates, thus ema weights still dominated by pretrained ones), try turn it off and see if provide better results.
|
55 |
|
56 |
+
### 3. Wandb Logging
|
57 |
|
58 |
The `wandb/` dir will be created under path you run training/finetuning scripts.
|
59 |
|
|
|
62 |
To turn on wandb logging, you can either:
|
63 |
|
64 |
1. Manually login with `wandb login`: Learn more [here](https://docs.wandb.ai/ref/cli/wandb-login)
|
65 |
+
2. Automatically login programmatically by setting an environment variable: Get an API KEY at https://wandb.ai/site/ and set the environment variable as follows:
|
66 |
|
67 |
On Mac & Linux:
|
68 |
|
|
|
75 |
```
|
76 |
set WANDB_API_KEY=<YOUR WANDB API KEY>
|
77 |
```
|
78 |
+
Moreover, if you couldn't access Wandb and want to log metrics offline, you can the environment variable as follows:
|
79 |
|
80 |
```
|
81 |
export WANDB_MODE=offline
|
f5_tts/train/__pycache__/finetune_gradio.cpython-310.pyc
CHANGED
Binary files a/f5_tts/train/__pycache__/finetune_gradio.cpython-310.pyc and b/f5_tts/train/__pycache__/finetune_gradio.cpython-310.pyc differ
|
|
f5_tts/train/datasets/prepare_csv_wavs.py
CHANGED
@@ -24,7 +24,7 @@ from f5_tts.model.utils import (
|
|
24 |
)
|
25 |
|
26 |
|
27 |
-
PRETRAINED_VOCAB_PATH = files("f5_tts").joinpath("../../data/
|
28 |
|
29 |
|
30 |
def is_csv_wavs_format(input_dataset_dir):
|
@@ -224,7 +224,7 @@ def save_prepped_dataset(out_dir, result, duration_list, text_vocab_set, is_fine
|
|
224 |
voca_out_path = out_dir / "vocab.txt"
|
225 |
if is_finetune:
|
226 |
file_vocab_finetune = PRETRAINED_VOCAB_PATH.as_posix()
|
227 |
-
|
228 |
else:
|
229 |
with open(voca_out_path.as_posix(), "w") as f:
|
230 |
for vocab in sorted(text_vocab_set):
|
|
|
24 |
)
|
25 |
|
26 |
|
27 |
+
PRETRAINED_VOCAB_PATH = files("f5_tts").joinpath("../../data/Emilia_ZH_EN_pinyin/vocab.txt")
|
28 |
|
29 |
|
30 |
def is_csv_wavs_format(input_dataset_dir):
|
|
|
224 |
voca_out_path = out_dir / "vocab.txt"
|
225 |
if is_finetune:
|
226 |
file_vocab_finetune = PRETRAINED_VOCAB_PATH.as_posix()
|
227 |
+
shutil.copy2(file_vocab_finetune, voca_out_path)
|
228 |
else:
|
229 |
with open(voca_out_path.as_posix(), "w") as f:
|
230 |
for vocab in sorted(text_vocab_set):
|
f5_tts/train/datasets/prepare_emilia.py
CHANGED
@@ -206,14 +206,14 @@ def main():
|
|
206 |
|
207 |
|
208 |
if __name__ == "__main__":
|
209 |
-
max_workers =
|
210 |
|
211 |
tokenizer = "pinyin" # "pinyin" | "char"
|
212 |
polyphone = True
|
213 |
|
214 |
-
langs = ["
|
215 |
-
dataset_dir = "
|
216 |
-
dataset_name = f"
|
217 |
save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}"
|
218 |
print(f"\nPrepare for {dataset_name}, will save to {save_dir}\n")
|
219 |
|
|
|
206 |
|
207 |
|
208 |
if __name__ == "__main__":
|
209 |
+
max_workers = 16
|
210 |
|
211 |
tokenizer = "pinyin" # "pinyin" | "char"
|
212 |
polyphone = True
|
213 |
|
214 |
+
langs = ["EN"]
|
215 |
+
dataset_dir = "data/datasetVN"
|
216 |
+
dataset_name = f"vnTTS_{'_'.join(langs)}_{tokenizer}"
|
217 |
save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}"
|
218 |
print(f"\nPrepare for {dataset_name}, will save to {save_dir}\n")
|
219 |
|
f5_tts/train/datasets/prepare_libritts.py
CHANGED
@@ -11,6 +11,11 @@ from tqdm import tqdm
|
|
11 |
import soundfile as sf
|
12 |
from datasets.arrow_writer import ArrowWriter
|
13 |
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def deal_with_audio_dir(audio_dir):
|
16 |
sub_result, durations = [], []
|
@@ -18,7 +23,7 @@ def deal_with_audio_dir(audio_dir):
|
|
18 |
audio_lists = list(audio_dir.rglob("*.wav"))
|
19 |
|
20 |
for line in audio_lists:
|
21 |
-
text_path = line.with_suffix(".
|
22 |
text = open(text_path, "r").read().strip()
|
23 |
duration = sf.info(line).duration
|
24 |
if duration < 0.4 or duration > 30:
|
@@ -76,13 +81,13 @@ def main():
|
|
76 |
|
77 |
|
78 |
if __name__ == "__main__":
|
79 |
-
max_workers =
|
80 |
|
81 |
tokenizer = "char" # "pinyin" | "char"
|
82 |
|
83 |
-
SUB_SET = ["
|
84 |
-
dataset_dir = "
|
85 |
-
dataset_name = f"
|
86 |
save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}"
|
87 |
print(f"\nPrepare for {dataset_name}, will save to {save_dir}\n")
|
88 |
main()
|
|
|
11 |
import soundfile as sf
|
12 |
from datasets.arrow_writer import ArrowWriter
|
13 |
|
14 |
+
from f5_tts.model.utils import (
|
15 |
+
repetition_found,
|
16 |
+
convert_char_to_pinyin,
|
17 |
+
)
|
18 |
+
|
19 |
|
20 |
def deal_with_audio_dir(audio_dir):
|
21 |
sub_result, durations = [], []
|
|
|
23 |
audio_lists = list(audio_dir.rglob("*.wav"))
|
24 |
|
25 |
for line in audio_lists:
|
26 |
+
text_path = line.with_suffix(".lab")
|
27 |
text = open(text_path, "r").read().strip()
|
28 |
duration = sf.info(line).duration
|
29 |
if duration < 0.4 or duration > 30:
|
|
|
81 |
|
82 |
|
83 |
if __name__ == "__main__":
|
84 |
+
max_workers = 16
|
85 |
|
86 |
tokenizer = "char" # "pinyin" | "char"
|
87 |
|
88 |
+
SUB_SET = ["mc"]
|
89 |
+
dataset_dir = "data/datasetVN"
|
90 |
+
dataset_name = f"vnTTS_{'_'.join(SUB_SET)}_{tokenizer}"
|
91 |
save_dir = str(files("f5_tts").joinpath("../../")) + f"/data/{dataset_name}"
|
92 |
print(f"\nPrepare for {dataset_name}, will save to {save_dir}\n")
|
93 |
main()
|
f5_tts/train/datasets/prepare_metadata.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
from tqdm import tqdm
|
3 |
+
|
4 |
+
wavs_path = glob.glob("data/datasetVN/mc/mc1/*.wav")
|
5 |
+
|
6 |
+
with open("data/vnTTS__char/metadata.csv", "w", encoding="utf8") as fw:
|
7 |
+
fw.write("audio_file|text\n")
|
8 |
+
for wav_path in tqdm(wavs_path):
|
9 |
+
wav_name = wav_path.split("/")[-1]
|
10 |
+
with open(wav_path.replace(".wav", ".lab"), "r", encoding="utf8") as fr:
|
11 |
+
text = fr.readlines()[0].replace("\n", "")
|
12 |
+
fw.write("wavs/" + wav_name + "|" + text + "\n")
|
f5_tts/train/finetune_cli.py
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
import argparse
|
2 |
import os
|
3 |
import shutil
|
4 |
-
from importlib.resources import files
|
5 |
|
6 |
from cached_path import cached_path
|
7 |
-
|
8 |
from f5_tts.model import CFM, UNetT, DiT, Trainer
|
9 |
from f5_tts.model.utils import get_tokenizer
|
10 |
from f5_tts.model.dataset import load_dataset
|
|
|
11 |
|
12 |
|
13 |
# -------------------------- Dataset Settings --------------------------- #
|
@@ -21,16 +20,21 @@ mel_spec_type = "vocos" # 'vocos' or 'bigvgan'
|
|
21 |
|
22 |
# -------------------------- Argument Parsing --------------------------- #
|
23 |
def parse_args():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
parser = argparse.ArgumentParser(description="Train CFM Model")
|
25 |
|
26 |
parser.add_argument(
|
27 |
-
"--exp_name",
|
28 |
-
type=str,
|
29 |
-
default="F5TTS_v1_Base",
|
30 |
-
choices=["F5TTS_v1_Base", "F5TTS_Base", "E2TTS_Base"],
|
31 |
-
help="Experiment name",
|
32 |
)
|
33 |
-
parser.add_argument("--dataset_name", type=str, default="
|
34 |
parser.add_argument("--learning_rate", type=float, default=1e-5, help="Learning rate for training")
|
35 |
parser.add_argument("--batch_size_per_gpu", type=int, default=3200, help="Batch size per GPU")
|
36 |
parser.add_argument(
|
@@ -39,7 +43,7 @@ def parse_args():
|
|
39 |
parser.add_argument("--max_samples", type=int, default=64, help="Max sequences per batch")
|
40 |
parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
|
41 |
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max gradient norm for clipping")
|
42 |
-
parser.add_argument("--epochs", type=int, default=
|
43 |
parser.add_argument("--num_warmup_updates", type=int, default=300, help="Warmup updates")
|
44 |
parser.add_argument("--save_per_updates", type=int, default=10000, help="Save checkpoint every X updates")
|
45 |
parser.add_argument(
|
@@ -50,7 +54,7 @@ def parse_args():
|
|
50 |
)
|
51 |
parser.add_argument("--last_per_updates", type=int, default=50000, help="Save last checkpoint every X updates")
|
52 |
parser.add_argument("--finetune", action="store_true", help="Use Finetune")
|
53 |
-
parser.add_argument("--pretrain", type=str, default=
|
54 |
parser.add_argument(
|
55 |
"--tokenizer", type=str, default="char", choices=["pinyin", "char", "custom"], help="Tokenizer type"
|
56 |
)
|
@@ -84,54 +88,19 @@ def main():
|
|
84 |
checkpoint_path = str(files("f5_tts").joinpath(f"../../ckpts/{args.dataset_name}"))
|
85 |
|
86 |
# Model parameters based on experiment name
|
87 |
-
|
88 |
-
if args.exp_name == "F5TTS_v1_Base":
|
89 |
wandb_resume_id = None
|
90 |
model_cls = DiT
|
91 |
-
model_cfg = dict(
|
92 |
-
dim=1024,
|
93 |
-
depth=22,
|
94 |
-
heads=16,
|
95 |
-
ff_mult=2,
|
96 |
-
text_dim=512,
|
97 |
-
conv_layers=4,
|
98 |
-
)
|
99 |
-
if args.finetune:
|
100 |
-
if args.pretrain is None:
|
101 |
-
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_v1_Base/model_1250000.safetensors"))
|
102 |
-
else:
|
103 |
-
ckpt_path = args.pretrain
|
104 |
-
|
105 |
-
elif args.exp_name == "F5TTS_Base":
|
106 |
-
wandb_resume_id = None
|
107 |
-
model_cls = DiT
|
108 |
-
model_cfg = dict(
|
109 |
-
dim=1024,
|
110 |
-
depth=22,
|
111 |
-
heads=16,
|
112 |
-
ff_mult=2,
|
113 |
-
text_dim=512,
|
114 |
-
text_mask_padding=False,
|
115 |
-
conv_layers=4,
|
116 |
-
pe_attn_head=1,
|
117 |
-
)
|
118 |
if args.finetune:
|
119 |
if args.pretrain is None:
|
120 |
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
|
121 |
else:
|
122 |
ckpt_path = args.pretrain
|
123 |
-
|
124 |
elif args.exp_name == "E2TTS_Base":
|
125 |
wandb_resume_id = None
|
126 |
model_cls = UNetT
|
127 |
-
model_cfg = dict(
|
128 |
-
dim=1024,
|
129 |
-
depth=24,
|
130 |
-
heads=16,
|
131 |
-
ff_mult=4,
|
132 |
-
text_mask_padding=False,
|
133 |
-
pe_attn_head=1,
|
134 |
-
)
|
135 |
if args.finetune:
|
136 |
if args.pretrain is None:
|
137 |
ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
|
@@ -149,10 +118,8 @@ def main():
|
|
149 |
if not os.path.isfile(file_checkpoint):
|
150 |
shutil.copy2(ckpt_path, file_checkpoint)
|
151 |
print("copy checkpoint for finetune")
|
152 |
-
print("Pretrained checkpoint được sử dụng: " + file_checkpoint)
|
153 |
|
154 |
# Use the tokenizer and tokenizer_path provided in the command line arguments
|
155 |
-
|
156 |
tokenizer = args.tokenizer
|
157 |
if tokenizer == "custom":
|
158 |
if not args.tokenizer_path:
|
@@ -163,8 +130,8 @@ def main():
|
|
163 |
|
164 |
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
165 |
|
166 |
-
print("
|
167 |
-
print("
|
168 |
|
169 |
mel_spec_kwargs = dict(
|
170 |
n_fft=n_fft,
|
@@ -189,7 +156,7 @@ def main():
|
|
189 |
save_per_updates=args.save_per_updates,
|
190 |
keep_last_n_checkpoints=args.keep_last_n_checkpoints,
|
191 |
checkpoint_path=checkpoint_path,
|
192 |
-
|
193 |
batch_size_type=args.batch_size_type,
|
194 |
max_samples=args.max_samples,
|
195 |
grad_accumulation_steps=args.grad_accumulation_steps,
|
|
|
1 |
import argparse
|
2 |
import os
|
3 |
import shutil
|
|
|
4 |
|
5 |
from cached_path import cached_path
|
|
|
6 |
from f5_tts.model import CFM, UNetT, DiT, Trainer
|
7 |
from f5_tts.model.utils import get_tokenizer
|
8 |
from f5_tts.model.dataset import load_dataset
|
9 |
+
from importlib.resources import files
|
10 |
|
11 |
|
12 |
# -------------------------- Dataset Settings --------------------------- #
|
|
|
20 |
|
21 |
# -------------------------- Argument Parsing --------------------------- #
|
22 |
def parse_args():
|
23 |
+
# batch_size_per_gpu = 1000 settting for gpu 8GB
|
24 |
+
# batch_size_per_gpu = 1600 settting for gpu 12GB
|
25 |
+
# batch_size_per_gpu = 2000 settting for gpu 16GB
|
26 |
+
# batch_size_per_gpu = 3200 settting for gpu 24GB
|
27 |
+
|
28 |
+
# num_warmup_updates = 300 for 5000 sample about 10 hours
|
29 |
+
|
30 |
+
# change save_per_updates , last_per_updates change this value what you need ,
|
31 |
+
|
32 |
parser = argparse.ArgumentParser(description="Train CFM Model")
|
33 |
|
34 |
parser.add_argument(
|
35 |
+
"--exp_name", type=str, default="F5TTS_Base", choices=["F5TTS_Base", "E2TTS_Base"], help="Experiment name"
|
|
|
|
|
|
|
|
|
36 |
)
|
37 |
+
parser.add_argument("--dataset_name", type=str, default="vnTTS_mc", help="Name of the dataset to use")
|
38 |
parser.add_argument("--learning_rate", type=float, default=1e-5, help="Learning rate for training")
|
39 |
parser.add_argument("--batch_size_per_gpu", type=int, default=3200, help="Batch size per GPU")
|
40 |
parser.add_argument(
|
|
|
43 |
parser.add_argument("--max_samples", type=int, default=64, help="Max sequences per batch")
|
44 |
parser.add_argument("--grad_accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
|
45 |
parser.add_argument("--max_grad_norm", type=float, default=1.0, help="Max gradient norm for clipping")
|
46 |
+
parser.add_argument("--epochs", type=int, default=100, help="Number of training epochs")
|
47 |
parser.add_argument("--num_warmup_updates", type=int, default=300, help="Warmup updates")
|
48 |
parser.add_argument("--save_per_updates", type=int, default=10000, help="Save checkpoint every X updates")
|
49 |
parser.add_argument(
|
|
|
54 |
)
|
55 |
parser.add_argument("--last_per_updates", type=int, default=50000, help="Save last checkpoint every X updates")
|
56 |
parser.add_argument("--finetune", action="store_true", help="Use Finetune")
|
57 |
+
parser.add_argument("--pretrain", type=str, default="/mnt/d/ckpts/vn_tts_mc_vlog/pretrained_model_1200000.pt", help="the path to the checkpoint")
|
58 |
parser.add_argument(
|
59 |
"--tokenizer", type=str, default="char", choices=["pinyin", "char", "custom"], help="Tokenizer type"
|
60 |
)
|
|
|
88 |
checkpoint_path = str(files("f5_tts").joinpath(f"../../ckpts/{args.dataset_name}"))
|
89 |
|
90 |
# Model parameters based on experiment name
|
91 |
+
if args.exp_name == "F5TTS_Base":
|
|
|
92 |
wandb_resume_id = None
|
93 |
model_cls = DiT
|
94 |
+
model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
if args.finetune:
|
96 |
if args.pretrain is None:
|
97 |
ckpt_path = str(cached_path("hf://SWivid/F5-TTS/F5TTS_Base/model_1200000.pt"))
|
98 |
else:
|
99 |
ckpt_path = args.pretrain
|
|
|
100 |
elif args.exp_name == "E2TTS_Base":
|
101 |
wandb_resume_id = None
|
102 |
model_cls = UNetT
|
103 |
+
model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
if args.finetune:
|
105 |
if args.pretrain is None:
|
106 |
ckpt_path = str(cached_path("hf://SWivid/E2-TTS/E2TTS_Base/model_1200000.pt"))
|
|
|
118 |
if not os.path.isfile(file_checkpoint):
|
119 |
shutil.copy2(ckpt_path, file_checkpoint)
|
120 |
print("copy checkpoint for finetune")
|
|
|
121 |
|
122 |
# Use the tokenizer and tokenizer_path provided in the command line arguments
|
|
|
123 |
tokenizer = args.tokenizer
|
124 |
if tokenizer == "custom":
|
125 |
if not args.tokenizer_path:
|
|
|
130 |
|
131 |
vocab_char_map, vocab_size = get_tokenizer(tokenizer_path, tokenizer)
|
132 |
|
133 |
+
print("\nvocab : ", vocab_size)
|
134 |
+
print("\nvocoder : ", mel_spec_type)
|
135 |
|
136 |
mel_spec_kwargs = dict(
|
137 |
n_fft=n_fft,
|
|
|
156 |
save_per_updates=args.save_per_updates,
|
157 |
keep_last_n_checkpoints=args.keep_last_n_checkpoints,
|
158 |
checkpoint_path=checkpoint_path,
|
159 |
+
batch_size=args.batch_size_per_gpu,
|
160 |
batch_size_type=args.batch_size_type,
|
161 |
max_samples=args.max_samples,
|
162 |
grad_accumulation_steps=args.grad_accumulation_steps,
|