Spaces:
Running
Running
import spaces | |
import os | |
from huggingface_hub import login | |
import gradio as gr | |
from cached_path import cached_path | |
import tempfile | |
from vinorm import TTSnorm | |
from f5_tts.model import DiT | |
from f5_tts.infer.utils_infer import ( | |
preprocess_ref_audio_text, | |
load_vocoder, | |
load_model, | |
infer_process, | |
save_spectrogram, | |
) | |
# Retrieve token from secrets | |
hf_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") | |
# Log in to Hugging Face | |
if hf_token: | |
login(token=hf_token) | |
def post_process(text): | |
text = " " + text + " " | |
text = text.replace(" . . ", " . ") | |
text = " " + text + " " | |
text = text.replace(" .. ", " . ") | |
text = " " + text + " " | |
text = text.replace(" , , ", " , ") | |
text = " " + text + " " | |
text = text.replace(" ,, ", " , ") | |
text = " " + text + " " | |
text = text.replace('"', "") | |
return " ".join(text.split()) | |
# Load models | |
vocoder = load_vocoder() | |
model = load_model( | |
DiT, | |
dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4), | |
ckpt_path=str(cached_path("hf://hynt/F5-TTS-Vietnamese-100h/model_500000.pt")), | |
vocab_file=str(cached_path("hf://hynt/F5-TTS-Vietnamese-100h/vocab.txt")), | |
) | |
def infer_tts(ref_audio_orig: str, gen_text: str, speed: float = 1.0, request: gr.Request = None): | |
if not ref_audio_orig: | |
raise gr.Error("Please upload a sample audio file.") | |
if not gen_text.strip(): | |
raise gr.Error("Please enter the text content to generate voice.") | |
if len(gen_text.split()) > 1000: | |
raise gr.Error("Please enter text content with less than 1000 words.") | |
try: | |
ref_audio, ref_text = preprocess_ref_audio_text(ref_audio_orig, "") | |
final_wave, final_sample_rate, spectrogram = infer_process( | |
ref_audio, ref_text.lower(), post_process(TTSnorm(gen_text)).lower(), model, vocoder, speed=speed | |
) | |
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_spectrogram: | |
spectrogram_path = tmp_spectrogram.name | |
save_spectrogram(spectrogram, spectrogram_path) | |
return (final_sample_rate, final_wave), spectrogram_path | |
except Exception as e: | |
raise gr.Error(f"Error generating voice: {e}") | |
# Gradio UI | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown(""" | |
# π€ F5-TTS: Vietnamese Text-to-Speech Synthesis. | |
# The model was trained for 500.000 steps with approximately 150 hours of data on an RTX 3090 GPU. | |
Enter text and upload a sample voice to generate natural speech. | |
""") | |
with gr.Row(): | |
ref_audio = gr.Audio(label="π Sample Voice", type="filepath") | |
gen_text = gr.Textbox(label="π Text", placeholder="Enter the text to generate voice...", lines=3) | |
speed = gr.Slider(0.3, 2.0, value=1.0, step=0.1, label="β‘ Speed") | |
btn_synthesize = gr.Button("π₯ Generate Voice") | |
with gr.Row(): | |
output_audio = gr.Audio(label="π§ Generated Audio", type="numpy") | |
output_spectrogram = gr.Image(label="π Spectrogram") | |
model_limitations = gr.Textbox( | |
value="""1. This model may not perform well with numerical characters, dates, special characters, etc. => A text normalization module is needed. | |
2. The rhythm of some generated audios may be inconsistent or choppy => It is recommended to select clearly pronounced sample audios with minimal pauses for better synthesis quality. | |
3. Default, reference audio text uses the whisper-large-v3-turbo model, which may not always accurately recognize Vietnamese, resulting in poor voice synthesis quality. | |
4. Checkpoint is stopped at step 500.000, trained with 150 hours of public data => Voice cloning for non-native voices may not be perfectly accurate. | |
5. Inference with overly long paragraphs may produce poor results.""", | |
label="β Model Limitations", | |
lines=5, | |
interactive=False | |
) | |
btn_synthesize.click(infer_tts, inputs=[ref_audio, gen_text, speed], outputs=[output_audio, output_spectrogram]) | |
# Run Gradio with share=True to get a gradio.live link | |
demo.queue().launch() |