import cv2 import torch import numpy as np from transformers import DPTForDepthEstimation, DPTImageProcessor import gradio as gr import torch.nn.utils.prune as prune device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-128", torch_dtype=torch.float16) model.eval() # Apply global unstructured pruning parameters_to_prune = [ (module, "weight") for module in filter(lambda m: isinstance(m, (torch.nn.Conv2d, torch.nn.Linear)), model.modules()) ] prune.global_unstructured( parameters_to_prune, pruning_method=prune.L1Unstructured, amount=0.4, # Prune 40% of weights ) for module, _ in parameters_to_prune: prune.remove(module, "weight") model = torch.quantization.quantize_dynamic( model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8 ) model = model.half().to(device) processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256") color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO) color_map = torch.from_numpy(color_map).to(device) input_tensor = torch.zeros((1, 3, 128, 128), dtype=torch.float16, device=device) def preprocess_image(image): image = torch.from_numpy(image).to(device, dtype=torch.float16) image = torch.nn.functional.interpolate(image.permute(2, 0, 1).unsqueeze(0), size=(128, 128), mode='bilinear', align_corners=False) return (image.squeeze(0) / 255.0) static_input = torch.zeros((1, 3, 128, 128), device=device, dtype=torch.float16) g = torch.cuda.CUDAGraph() with torch.cuda.graph(g): static_output = model(static_input) @torch.inference_mode() def process_frame(image): if image is None: return None preprocessed = preprocess_image(image) static_input.copy_(preprocessed) g.replay() depth_map = static_output.predicted_depth.squeeze() depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) depth_map = (depth_map * 255).to(torch.uint8) depth_map_colored = color_map[depth_map] return depth_map_colored.cpu().numpy() interface = gr.Interface( fn=process_frame, inputs=gr.Image(sources="webcam", streaming=True), outputs="image", live=True ) interface.launch()