import cv2 import torch import numpy as np from transformers import DPTForDepthEstimation, DPTImageProcessor import gradio as gr import torch.quantization import torch.nn.utils.prune as prune device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float32) model.eval() # Apply global unstructured pruning parameters_to_prune = [ (module, "weight") for module in filter(lambda m: isinstance(m, (torch.nn.Conv2d, torch.nn.Linear)), model.modules()) ] prune.global_unstructured( parameters_to_prune, pruning_method=prune.L1Unstructured, amount=0.3, # Prune 30% of weights ) for module, _ in parameters_to_prune: prune.remove(module, "weight") # Apply quantization after pruning model = torch.quantization.quantize_dynamic( model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8 ).to(device) processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256") color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO) input_tensor = torch.zeros((1, 3, 128, 128), dtype=torch.float32, device=device) def preprocess_image(image): return cv2.resize(image, (128, 72), interpolation=cv2.INTER_AREA).transpose(2, 0, 1).astype(np.float32) / 255.0 @torch.inference_mode() def process_frame(image): if image is None: return None preprocessed = preprocess_image(image) input_tensor = torch.from_numpy(preprocessed).unsqueeze(0).to(device) predicted_depth = model(input_tensor).predicted_depth depth_map = predicted_depth.squeeze().cpu().numpy() depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) depth_map = (depth_map * 255).astype(np.uint8) depth_map_colored = cv2.applyColorMap(depth_map, cv2.COLORMAP_INFERNO) return cv2.cvtColor(depth_map_colored, cv2.COLOR_BGR2RGB) interface = gr.Interface( fn=process_frame, inputs=gr.Image(sources="webcam", streaming=True), outputs="image", live=True ) interface.launch()