huntrezz's picture
Update app.py (#1)
e8486cb verified
raw
history blame
2.14 kB
import cv2
import torch
import numpy as np
from transformers import DPTForDepthEstimation, DPTImageProcessor
import gradio as gr
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float16).to(device)
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")
def resize_image(image, target_size=(256, 256)):
return cv2.resize(image, target_size)
def manual_normalize(depth_map):
min_val = np.min(depth_map)
max_val = np.max(depth_map)
if min_val != max_val:
normalized = (depth_map - min_val) / (max_val - min_val)
return (normalized * 255).astype(np.uint8)
else:
return np.zeros_like(depth_map, dtype=np.uint8)
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)
def process_frame(image):
rgb_frame = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
resized_frame = resize_image(rgb_frame)
inputs = processor(images=resized_frame, return_tensors="pt").to(device)
inputs = {k: v.to(torch.float16) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
depth_map = predicted_depth.squeeze().cpu().numpy()
depth_map = np.nan_to_num(depth_map, nan=0.0, posinf=0.0, neginf=0.0)
depth_map = depth_map.astype(np.float32)
if depth_map.size == 0:
depth_map = np.zeros((256, 256), dtype=np.uint8)
else:
if np.any(depth_map) and np.min(depth_map) != np.max(depth_map):
depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
else:
depth_map = np.zeros_like(depth_map, dtype=np.uint8)
if np.all(depth_map == 0):
depth_map = manual_normalize(depth_map)
depth_map_colored = cv2.applyColorMap(depth_map, color_map)
return cv2.cvtColor(depth_map_colored, cv2.COLOR_BGR2RGB)
interface = gr.Interface(
fn=process_frame,
inputs=gr.Image(source="webcam", streaming=True),
outputs="image",
live=True
)
interface.launch()