Spaces:
Runtime error
Runtime error
import cv2 | |
import torch | |
import numpy as np | |
from transformers import DPTForDepthEstimation, DPTImageProcessor | |
import gradio as gr | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float16).to(device) | |
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256") | |
color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO) | |
input_tensor = torch.zeros((1, 3, 128, 128), dtype=torch.float16, device=device) | |
depth_map = np.zeros((128, 128), dtype=np.float32) | |
depth_map_colored = np.zeros((128, 128, 3), dtype=np.uint8) | |
def preprocess_image(image): | |
return cv2.resize(image, (128, 128), interpolation=cv2.INTER_AREA).transpose(2, 0, 1).astype(np.float32) / 255.0 | |
def process_frame(image): | |
preprocessed = preprocess_image(image) | |
input_tensor[0] = torch.from_numpy(preprocessed).to(device) | |
if torch.cuda.is_available(): | |
torch.cuda.synchronize() | |
predicted_depth = model(input_tensor).predicted_depth | |
np.subtract(predicted_depth.squeeze().cpu().numpy(), predicted_depth.min().item(), out=depth_map) | |
np.divide(depth_map, depth_map.max(), out=depth_map) | |
np.multiply(depth_map, 255, out=depth_map) | |
depth_map = depth_map.astype(np.uint8) | |
cv2.applyColorMap(depth_map, color_map, dst=depth_map_colored) | |
return depth_map_colored | |
interface = gr.Interface( | |
fn=process_frame, | |
inputs=gr.Image(source="webcam", streaming=True), | |
outputs="image", | |
live=True, | |
refresh_rate=0.1 | |
) | |
interface.launch() |