File size: 2,140 Bytes
f8b3886
 
 
0143794
21d17cc
f8b3886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21d17cc
 
 
f8b3886
21d17cc
 
f8b3886
21d17cc
 
 
f8b3886
21d17cc
f8b3886
21d17cc
 
f8b3886
21d17cc
 
 
 
 
f8b3886
21d17cc
f8b3886
21d17cc
 
f8b3886
21d17cc
 
f8b3886
21d17cc
 
 
 
 
 
f8b3886
21d17cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import cv2
import torch
import numpy as np
from transformers import DPTForDepthEstimation, DPTImageProcessor
import gradio as gr

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float16).to(device)
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")

def resize_image(image, target_size=(256, 256)):
    return cv2.resize(image, target_size)

def manual_normalize(depth_map):
    min_val = np.min(depth_map)
    max_val = np.max(depth_map)
    if min_val != max_val:
        normalized = (depth_map - min_val) / (max_val - min_val)
        return (normalized * 255).astype(np.uint8)
    else:
        return np.zeros_like(depth_map, dtype=np.uint8)

color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)

def process_frame(image):
    rgb_frame = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    resized_frame = resize_image(rgb_frame)

    inputs = processor(images=resized_frame, return_tensors="pt").to(device)
    inputs = {k: v.to(torch.float16) for k, v in inputs.items()}

    with torch.no_grad():
        outputs = model(**inputs)
        predicted_depth = outputs.predicted_depth

    depth_map = predicted_depth.squeeze().cpu().numpy()

    depth_map = np.nan_to_num(depth_map, nan=0.0, posinf=0.0, neginf=0.0)
    depth_map = depth_map.astype(np.float32)

    if depth_map.size == 0:
        depth_map = np.zeros((256, 256), dtype=np.uint8)
    else:
        if np.any(depth_map) and np.min(depth_map) != np.max(depth_map):
            depth_map = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
        else:
            depth_map = np.zeros_like(depth_map, dtype=np.uint8)

    if np.all(depth_map == 0):
        depth_map = manual_normalize(depth_map)

    depth_map_colored = cv2.applyColorMap(depth_map, color_map)
    return cv2.cvtColor(depth_map_colored, cv2.COLOR_BGR2RGB)

interface = gr.Interface(
    fn=process_frame,
    inputs=gr.Image(source="webcam", streaming=True),
    outputs="image",
    live=True
)

interface.launch()