File size: 1,598 Bytes
f8b3886
 
 
0143794
e8486cb
726a72f
f8b3886
 
726a72f
 
 
 
 
f8b3886
 
 
 
726a72f
a42d79c
 
 
 
79684c1
e8486cb
1f906f0
 
a42d79c
 
1f906f0
a42d79c
1f906f0
 
 
 
d4f8b39
1f906f0
f8b3886
e8486cb
 
248871f
e8486cb
5e123c4
e8486cb
f8b3886
e8486cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import cv2
import torch
import numpy as np
from transformers import DPTForDepthEstimation, DPTImageProcessor
import gradio as gr
import torch.quantization

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-swinv2-tiny-256", torch_dtype=torch.float32)
model.eval()
model = torch.quantization.quantize_dynamic(
    model, {torch.nn.Linear, torch.nn.Conv2d}, dtype=torch.qint8
).to(device)
processor = DPTImageProcessor.from_pretrained("Intel/dpt-swinv2-tiny-256")

color_map = cv2.applyColorMap(np.arange(256, dtype=np.uint8), cv2.COLORMAP_INFERNO)

input_tensor = torch.zeros((1, 3, 128, 128), dtype=torch.float32, device=device)

def preprocess_image(image):
    return cv2.resize(image, (128, 128), interpolation=cv2.INTER_AREA).transpose(2, 0, 1).astype(np.float32) / 255.0

@torch.inference_mode()
def process_frame(image):
    if image is None:
        return None
    preprocessed = preprocess_image(image)
    input_tensor[0] = torch.from_numpy(preprocessed).to(device)
    
    predicted_depth = model(input_tensor).predicted_depth
    depth_map = predicted_depth.squeeze().cpu().numpy()
    depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
    depth_map = (depth_map * 255).astype(np.uint8)
    depth_map_colored = cv2.applyColorMap(depth_map, color_map)
    
    return cv2.cvtColor(depth_map_colored, cv2.COLOR_BGR2RGB)

interface = gr.Interface(
    fn=process_frame,
    inputs=gr.Image(sources="webcam", streaming=True),
    outputs="image",
    live=True
)

interface.launch()