import os from langchain_community.vectorstores import FAISS from langchain_community.embeddings import HuggingFaceEmbeddings # Hàm khởi tạo retriever def load_retriever(): embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") retriever = FAISS.load_local("vectorstore", embeddings, allow_dangerous_deserialization=True).as_retriever(search_kwargs={"k": 5}) return retriever # Lần đầu load retriever retriever = load_retriever() # Hàm reload retriever khi thêm tài liệu def reload_retriever(): global retriever retriever = load_retriever() # Hàm retrieve_docs để lấy tài liệu def retrieve_docs(query): return retriever.get_relevant_documents(query)