|
import os
|
|
from langchain_community.vectorstores import FAISS
|
|
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
|
|
|
def load_retriever():
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
|
retriever = FAISS.load_local("vectorstore", embeddings, allow_dangerous_deserialization=True).as_retriever(search_kwargs={"k": 5})
|
|
return retriever
|
|
|
|
|
|
retriever = load_retriever()
|
|
|
|
|
|
def reload_retriever():
|
|
global retriever
|
|
retriever = load_retriever()
|
|
|
|
|
|
def retrieve_docs(query):
|
|
return retriever.get_relevant_documents(query)
|
|
|