Update app.py
Browse files
app.py
CHANGED
@@ -23,7 +23,7 @@ compute_type = "float16" if device == "cuda" else "int8"
|
|
23 |
print(f"Using device: {device} with compute_type: {compute_type}")
|
24 |
|
25 |
# Faster Whisper setup with optimized parameters for long audio
|
26 |
-
beamsize =
|
27 |
wmodel = WhisperModel(
|
28 |
"guillaumekln/faster-whisper-small",
|
29 |
device=device,
|
@@ -74,97 +74,49 @@ def whisper_transcribe():
|
|
74 |
global active_requests
|
75 |
|
76 |
if not request_semaphore.acquire(blocking=False):
|
77 |
-
return jsonify({
|
78 |
-
'status': 'Server busy',
|
79 |
-
'message': f'Currently processing {active_requests} requests',
|
80 |
-
'suggestion': 'Please try again shortly'
|
81 |
-
}), 503
|
82 |
|
83 |
active_requests += 1
|
84 |
-
|
85 |
-
|
86 |
temp_file_path = None
|
87 |
|
88 |
try:
|
89 |
if 'audio' not in request.files:
|
90 |
return jsonify({'error': 'No file provided'}), 400
|
91 |
-
|
92 |
audio_file = request.files['audio']
|
93 |
if not (audio_file and allowed_file(audio_file.filename)):
|
94 |
return jsonify({'error': 'Invalid file format'}), 400
|
95 |
|
96 |
-
# Save to temporary file for large audio processing
|
97 |
temp_file_path = os.path.join(TEMPORARY_FOLDER, secure_filename(audio_file.filename))
|
98 |
audio_file.save(temp_file_path)
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
try:
|
107 |
-
start_time = time.time()
|
108 |
-
|
109 |
-
# Process in chunks with VAD for long audio
|
110 |
-
segments, info = wmodel.transcribe(
|
111 |
-
temp_file_path,
|
112 |
-
beam_size=beamsize,
|
113 |
-
language=language,
|
114 |
-
task=task,
|
115 |
-
vad_filter=vad_filter,
|
116 |
-
word_timestamps=word_timestamps,
|
117 |
-
chunk_length=30 # Process in 30-second chunks
|
118 |
-
)
|
119 |
-
|
120 |
-
# Stream results as they become available
|
121 |
-
results = []
|
122 |
-
for segment in segments:
|
123 |
-
if time.time() - start_time > MAX_AUDIO_DURATION:
|
124 |
-
raise TimeoutError(f"Transcription exceeded maximum allowed duration of {MAX_AUDIO_DURATION} seconds")
|
125 |
-
|
126 |
-
result = {
|
127 |
-
'text': segment.text,
|
128 |
-
'start': segment.start,
|
129 |
-
'end': segment.end
|
130 |
-
}
|
131 |
-
|
132 |
-
if word_timestamps and segment.words:
|
133 |
-
result['words'] = [{
|
134 |
-
'word': word.word,
|
135 |
-
'start': word.start,
|
136 |
-
'end': word.end,
|
137 |
-
'probability': word.probability
|
138 |
-
} for word in segment.words]
|
139 |
-
|
140 |
-
results.append(result)
|
141 |
-
|
142 |
-
processing_time = time.time() - start_time
|
143 |
-
print(f"Transcription completed in {processing_time:.2f} seconds")
|
144 |
-
|
145 |
-
return jsonify({
|
146 |
-
'segments': results,
|
147 |
-
'summary': {
|
148 |
-
'processing_time': processing_time,
|
149 |
-
'language': info.language,
|
150 |
-
'language_probability': info.language_probability,
|
151 |
-
'duration': sum(seg.end - seg.start for seg in results if hasattr(seg, 'end'))
|
152 |
-
}
|
153 |
-
})
|
154 |
-
|
155 |
-
except TimeoutError as te:
|
156 |
-
print(f"Transcription timeout: {str(te)}")
|
157 |
-
return jsonify({'error': str(te)}), 504
|
158 |
-
except Exception as e:
|
159 |
-
print(f"Transcription error: {str(e)}")
|
160 |
-
return jsonify({'error': 'Transcription failed', 'details': str(e)}), 500
|
161 |
-
|
162 |
finally:
|
163 |
if temp_file_path:
|
164 |
cleanup_temp_files(temp_file_path)
|
165 |
active_requests -= 1
|
166 |
request_semaphore.release()
|
167 |
-
print(f"
|
168 |
|
169 |
if __name__ == "__main__":
|
170 |
# Create temporary folder if it doesn't exist
|
|
|
23 |
print(f"Using device: {device} with compute_type: {compute_type}")
|
24 |
|
25 |
# Faster Whisper setup with optimized parameters for long audio
|
26 |
+
beamsize = 2 # Slightly larger beam size can help with long-form accuracy
|
27 |
wmodel = WhisperModel(
|
28 |
"guillaumekln/faster-whisper-small",
|
29 |
device=device,
|
|
|
74 |
global active_requests
|
75 |
|
76 |
if not request_semaphore.acquire(blocking=False):
|
77 |
+
return jsonify({'error': 'Server busy'}), 503
|
|
|
|
|
|
|
|
|
78 |
|
79 |
active_requests += 1
|
80 |
+
start_time = time.time()
|
|
|
81 |
temp_file_path = None
|
82 |
|
83 |
try:
|
84 |
if 'audio' not in request.files:
|
85 |
return jsonify({'error': 'No file provided'}), 400
|
86 |
+
|
87 |
audio_file = request.files['audio']
|
88 |
if not (audio_file and allowed_file(audio_file.filename)):
|
89 |
return jsonify({'error': 'Invalid file format'}), 400
|
90 |
|
|
|
91 |
temp_file_path = os.path.join(TEMPORARY_FOLDER, secure_filename(audio_file.filename))
|
92 |
audio_file.save(temp_file_path)
|
93 |
|
94 |
+
segments, _ = wmodel.transcribe(
|
95 |
+
temp_file_path,
|
96 |
+
beam_size=beamsize,
|
97 |
+
vad_filter=True,
|
98 |
+
without_timestamps=True, # Ensure timestamps are not included
|
99 |
+
compression_ratio_threshold=2.4,
|
100 |
+
word_timestamps=False
|
101 |
+
)
|
102 |
+
|
103 |
+
full_text = " ".join(segment.text for segment in segments)
|
104 |
+
|
105 |
+
return Response(
|
106 |
+
response=full_text,
|
107 |
+
status=200,
|
108 |
+
mimetype='text/plain'
|
109 |
+
)
|
110 |
+
|
111 |
+
except Exception as e:
|
112 |
+
return jsonify({'error': str(e)}), 500
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
finally:
|
115 |
if temp_file_path:
|
116 |
cleanup_temp_files(temp_file_path)
|
117 |
active_requests -= 1
|
118 |
request_semaphore.release()
|
119 |
+
print(f"Processed in {time.time()-start_time:.2f}s (Active: {active_requests})")
|
120 |
|
121 |
if __name__ == "__main__":
|
122 |
# Create temporary folder if it doesn't exist
|