Spaces:
Running
Running
# | |
# SPDX-FileCopyrightText: Hadad <hadad@linuxmail.org> | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
import asyncio | |
import codecs | |
import docx | |
import gradio as gr | |
import httpx | |
import json | |
import os | |
import pandas as pd | |
import pdfplumber | |
import pytesseract | |
import random | |
import requests | |
import threading | |
import uuid | |
import zipfile | |
import io | |
from PIL import Image | |
from pathlib import Path | |
from pptx import Presentation | |
from openpyxl import load_workbook | |
os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev") | |
JARVIS_INIT = json.loads(os.getenv("HELLO", "[]")) | |
DEEP_SEARCH_PROVIDER_HOST = os.getenv("DEEP_SEARCH_PROVIDER_HOST") | |
DEEP_SEARCH_PROVIDER_KEY = os.getenv('DEEP_SEARCH_PROVIDER_KEY') | |
DEEP_SEARCH_INSTRUCTIONS = os.getenv("DEEP_SEARCH_INSTRUCTIONS") | |
INTERNAL_AI_GET_SERVER = os.getenv("INTERNAL_AI_GET_SERVER") | |
INTERNAL_AI_INSTRUCTIONS = os.getenv("INTERNAL_TRAINING_DATA") | |
SYSTEM_PROMPT_MAPPING = json.loads(os.getenv("SYSTEM_PROMPT_MAPPING", "{}")) | |
SYSTEM_PROMPT_DEFAULT = os.getenv("DEFAULT_SYSTEM") | |
LINUX_SERVER_HOSTS = [h for h in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if h] | |
LINUX_SERVER_PROVIDER_KEYS = [k for k in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if k] | |
LINUX_SERVER_PROVIDER_KEYS_MARKED = set() | |
LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {} | |
LINUX_SERVER_ERRORS = set(map(int, os.getenv("LINUX_SERVER_ERROR", "").split(","))) | |
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 10)} | |
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 11)} | |
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}")) | |
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}")) | |
MODEL_CHOICES = list(MODEL_MAPPING.values()) | |
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}")) | |
DEFAULT_MODEL_KEY = list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else None | |
META_TAGS = os.getenv("META_TAGS") | |
ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS", "[]")) | |
class SessionWithID(requests.Session): | |
def __init__(sess): | |
super().__init__() | |
sess.session_id = str(uuid.uuid4()) | |
sess.stop_event = asyncio.Event() | |
sess.cancel_token = {"cancelled": False} | |
def create_session(): | |
return SessionWithID() | |
def ensure_stop_event(sess): | |
if not hasattr(sess, "stop_event"): | |
sess.stop_event = asyncio.Event() | |
if not hasattr(sess, "cancel_token"): | |
sess.cancel_token = {"cancelled": False} | |
def marked_item(item, marked, attempts): | |
marked.add(item) | |
attempts[item] = attempts.get(item, 0) + 1 | |
if attempts[item] >= 3: | |
def remove(): | |
marked.discard(item) | |
attempts.pop(item, None) | |
threading.Timer(300, remove).start() | |
def get_model_key(display): | |
return next((k for k, v in MODEL_MAPPING.items() if v == display), DEFAULT_MODEL_KEY) | |
def extract_pdf_content(fp): | |
content = "" | |
try: | |
with pdfplumber.open(fp) as pdf: | |
for page in pdf.pages: | |
text = page.extract_text() or "" | |
content += text + "\n" | |
if page.images: | |
img_obj = page.to_image(resolution=300) | |
for img in page.images: | |
bbox = (img["x0"], img["top"], img["x1"], img["bottom"]) | |
cropped = img_obj.original.crop(bbox) | |
ocr_text = pytesseract.image_to_string(cropped) | |
if ocr_text.strip(): | |
content += ocr_text + "\n" | |
tables = page.extract_tables() | |
for table in tables: | |
for row in table: | |
cells = [str(cell) for cell in row if cell is not None] | |
if cells: | |
content += "\t".join(cells) + "\n" | |
except Exception as e: | |
content += f"{fp}: {e}" | |
return content.strip() | |
def extract_docx_content(fp): | |
content = "" | |
try: | |
doc = docx.Document(fp) | |
for para in doc.paragraphs: | |
content += para.text + "\n" | |
for table in doc.tables: | |
for row in table.rows: | |
cells = [cell.text for cell in row.cells] | |
content += "\t".join(cells) + "\n" | |
with zipfile.ZipFile(fp) as z: | |
for file in z.namelist(): | |
if file.startswith("word/media/"): | |
data = z.read(file) | |
try: | |
img = Image.open(io.BytesIO(data)) | |
ocr_text = pytesseract.image_to_string(img) | |
if ocr_text.strip(): | |
content += ocr_text + "\n" | |
except: | |
pass | |
except Exception as e: | |
content += f"{fp}: {e}" | |
return content.strip() | |
def extract_excel_content(fp): | |
content = "" | |
try: | |
sheets = pd.read_excel(fp, sheet_name=None) | |
for name, df in sheets.items(): | |
content += f"Sheet: {name}\n" | |
content += df.to_csv(index=False) + "\n" | |
wb = load_workbook(fp, data_only=True) | |
if wb._images: | |
for image in wb._images: | |
img = image.ref | |
if isinstance(img, bytes): | |
try: | |
pil_img = Image.open(io.BytesIO(img)) | |
ocr_text = pytesseract.image_to_string(pil_img) | |
if ocr_text.strip(): | |
content += ocr_text + "\n" | |
except: | |
pass | |
except Exception as e: | |
content += f"{fp}: {e}" | |
return content.strip() | |
def extract_pptx_content(fp): | |
content = "" | |
try: | |
prs = Presentation(fp) | |
for slide in prs.slides: | |
for shape in slide.shapes: | |
if hasattr(shape, "text") and shape.text: | |
content += shape.text + "\n" | |
if shape.shape_type == 13 and hasattr(shape, "image") and shape.image: | |
try: | |
img = Image.open(io.BytesIO(shape.image.blob)) | |
ocr_text = pytesseract.image_to_string(img) | |
if ocr_text.strip(): | |
content += ocr_text + "\n" | |
except: | |
pass | |
for shape in slide.shapes: | |
if shape.has_table: | |
table = shape.table | |
for row in table.rows: | |
cells = [cell.text for cell in row.cells] | |
content += "\t".join(cells) + "\n" | |
except Exception as e: | |
content += f"{fp}: {e}" | |
return content.strip() | |
def extract_file_content(fp): | |
ext = Path(fp).suffix.lower() | |
if ext == ".pdf": | |
return extract_pdf_content(fp) | |
elif ext in [".doc", ".docx"]: | |
return extract_docx_content(fp) | |
elif ext in [".xlsx", ".xls"]: | |
return extract_excel_content(fp) | |
elif ext in [".ppt", ".pptx"]: | |
return extract_pptx_content(fp) | |
else: | |
try: | |
return Path(fp).read_text(encoding="utf-8").strip() | |
except Exception as e: | |
return f"{fp}: {e}" | |
async def fetch_response_stream_async(host, key, model, msgs, cfg, sid, stop_event, cancel_token): | |
for t in [5, 10]: | |
try: | |
async with httpx.AsyncClient(timeout=t) as client: | |
async with client.stream("POST", host, json={**{"model": model, "messages": msgs, "session_id": sid, "stream": True}, **cfg}, headers={"Authorization": f"Bearer {key}"}) as response: | |
if response.status_code in LINUX_SERVER_ERRORS: | |
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS) | |
return | |
async for line in response.aiter_lines(): | |
if stop_event.is_set() or cancel_token["cancelled"]: | |
return | |
if not line: | |
continue | |
if line.startswith("data: "): | |
data = line[6:] | |
if data.strip() == RESPONSES["RESPONSE_10"]: | |
return | |
try: | |
j = json.loads(data) | |
if isinstance(j, dict) and j.get("choices"): | |
for ch in j["choices"]: | |
delta = ch.get("delta", {}) | |
if "reasoning" in delta and delta["reasoning"]: | |
decoded = delta["reasoning"].encode('utf-8').decode('unicode_escape') | |
yield ("reasoning", decoded) | |
if "content" in delta and delta["content"]: | |
yield ("content", delta["content"]) | |
except: | |
continue | |
except: | |
continue | |
marked_item(key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS) | |
return | |
async def chat_with_model_async(history, user_input, model_display, sess, custom_prompt, deep_search): | |
ensure_stop_event(sess) | |
sess.stop_event.clear() | |
sess.cancel_token["cancelled"] = False | |
if not LINUX_SERVER_PROVIDER_KEYS or not LINUX_SERVER_HOSTS: | |
yield ("content", RESPONSES["RESPONSE_3"]) | |
return | |
if not hasattr(sess, "session_id") or not sess.session_id: | |
sess.session_id = str(uuid.uuid4()) | |
model_key = get_model_key(model_display) | |
cfg = MODEL_CONFIG.get(model_key, DEFAULT_CONFIG) | |
msgs = [] | |
if deep_search and model_display == MODEL_CHOICES[0]: | |
msgs.append({"role": "system", "content": DEEP_SEARCH_INSTRUCTIONS}) | |
try: | |
async with httpx.AsyncClient() as client: | |
payload = { | |
"query": user_input, | |
"topic": "general", | |
"search_depth": "basic", | |
"chunks_per_source": 5, | |
"max_results": 5, | |
"time_range": None, | |
"days": 7, | |
"include_answer": True, | |
"include_raw_content": False, | |
"include_images": False, | |
"include_image_descriptions": False, | |
"include_domains": [], | |
"exclude_domains": [] | |
} | |
r = await client.post(DEEP_SEARCH_PROVIDER_HOST, headers={"Authorization": f"Bearer {DEEP_SEARCH_PROVIDER_KEY}"}, json=payload) | |
sr_json = r.json() | |
msgs.append({"role": "system", "content": json.dumps(sr_json)}) | |
except: | |
pass | |
msgs.append({"role": "system", "content": INTERNAL_AI_INSTRUCTIONS}) | |
elif model_display == MODEL_CHOICES[0]: | |
msgs.append({"role": "system", "content": INTERNAL_AI_INSTRUCTIONS}) | |
else: | |
msgs.append({"role": "system", "content": custom_prompt or SYSTEM_PROMPT_MAPPING.get(model_key, SYSTEM_PROMPT_DEFAULT)}) | |
msgs.extend([{"role": "user", "content": u} for u, _ in history] + [{"role": "assistant", "content": a} for _, a in history if a]) | |
msgs.append({"role": "user", "content": user_input}) | |
candidates = [(h, k) for h in LINUX_SERVER_HOSTS for k in LINUX_SERVER_PROVIDER_KEYS] | |
random.shuffle(candidates) | |
for h, k in candidates: | |
stream_gen = fetch_response_stream_async(h, k, model_key, msgs, cfg, sess.session_id, sess.stop_event, sess.cancel_token) | |
got_responses = False | |
async for chunk in stream_gen: | |
if sess.stop_event.is_set() or sess.cancel_token["cancelled"]: | |
return | |
got_responses = True | |
yield chunk | |
if got_responses: | |
return | |
yield ("content", RESPONSES["RESPONSE_2"]) | |
async def respond_async(multi, history, model_display, sess, custom_prompt, deep_search): | |
ensure_stop_event(sess) | |
sess.stop_event.clear() | |
sess.cancel_token["cancelled"] = False | |
msg_input = {"text": multi.get("text", "").strip(), "files": multi.get("files", [])} | |
if not msg_input["text"] and not msg_input["files"]: | |
yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess | |
return | |
inp = "" | |
for f in msg_input["files"]: | |
fp = f.get("data", f.get("name", "")) if isinstance(f, dict) else f | |
inp += f"{Path(fp).name}\n\n{extract_file_content(fp)}\n\n" | |
if msg_input["text"]: | |
inp += msg_input["text"] | |
history.append([inp, RESPONSES["RESPONSE_8"]]) | |
yield history, gr.update(interactive=False, submit_btn=False, stop_btn=True), sess | |
queue = asyncio.Queue() | |
async def background(): | |
reasoning = "" | |
responses = "" | |
content_started = False | |
ignore_reasoning = False | |
async for typ, chunk in chat_with_model_async(history, inp, model_display, sess, custom_prompt, deep_search): | |
if sess.stop_event.is_set() or sess.cancel_token["cancelled"]: | |
break | |
if typ == "reasoning": | |
if ignore_reasoning: | |
continue | |
reasoning += chunk | |
await queue.put(("reasoning", reasoning)) | |
elif typ == "content": | |
if not content_started: | |
content_started = True | |
ignore_reasoning = True | |
responses = chunk | |
await queue.put(("reasoning", "")) | |
await queue.put(("replace", responses)) | |
else: | |
responses += chunk | |
await queue.put(("append", responses)) | |
await queue.put(None) | |
return responses | |
bg_task = asyncio.create_task(background()) | |
stop_task = asyncio.create_task(sess.stop_event.wait()) | |
try: | |
while True: | |
done, _ = await asyncio.wait({stop_task, asyncio.create_task(queue.get())}, return_when=asyncio.FIRST_COMPLETED) | |
if stop_task in done: | |
sess.cancel_token["cancelled"] = True | |
bg_task.cancel() | |
history[-1][1] = RESPONSES["RESPONSE_1"] | |
yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess | |
return | |
for d in done: | |
result = d.result() | |
if result is None: | |
raise StopAsyncIteration | |
action, text = result | |
history[-1][1] = text | |
yield history, gr.update(interactive=False, submit_btn=False, stop_btn=True), sess | |
except StopAsyncIteration: | |
pass | |
finally: | |
stop_task.cancel() | |
full_response = await bg_task | |
yield history, gr.update(value="", interactive=True, submit_btn=True, stop_btn=False), sess | |
def change_model(new): | |
visible = new == MODEL_CHOICES[0] | |
default = SYSTEM_PROMPT_MAPPING.get(get_model_key(new), SYSTEM_PROMPT_DEFAULT) | |
return [], create_session(), new, default, False, gr.update(visible=visible) | |
def stop_response(history, sess): | |
ensure_stop_event(sess) | |
sess.stop_event.set() | |
sess.cancel_token["cancelled"] = True | |
if history: | |
history[-1][1] = RESPONSES["RESPONSE_1"] | |
return history, None, create_session() | |
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis: | |
user_history = gr.State([]) | |
user_session = gr.State(create_session()) | |
selected_model = gr.State(MODEL_CHOICES[0] if MODEL_CHOICES else "") | |
J_A_R_V_I_S = gr.State("") | |
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"], examples=JARVIS_INIT) | |
deep_search = gr.Checkbox(label=AI_TYPES["AI_TYPE_8"], value=False, info=AI_TYPES["AI_TYPE_9"], visible=True) | |
msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS) | |
with gr.Sidebar(open=False): | |
model_radio = gr.Radio(show_label=False, choices=MODEL_CHOICES, value=MODEL_CHOICES[0]) | |
model_radio.change(fn=change_model, inputs=[model_radio], outputs=[user_history, user_session, selected_model, J_A_R_V_I_S, deep_search, deep_search]) | |
def on_example_select(evt: gr.SelectData): | |
return evt.value | |
chatbot.example_select(fn=on_example_select, inputs=[], outputs=[msg]).then(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, J_A_R_V_I_S, deep_search], outputs=[chatbot, msg, user_session]) | |
def clear_chat(history, sess, prompt, model): | |
return [], create_session(), prompt, model, [] | |
deep_search.change(fn=clear_chat, inputs=[user_history, user_session, J_A_R_V_I_S, selected_model], outputs=[chatbot, user_session, J_A_R_V_I_S, selected_model, user_history]) | |
chatbot.clear(fn=clear_chat, inputs=[user_history, user_session, J_A_R_V_I_S, selected_model], outputs=[chatbot, user_session, J_A_R_V_I_S, selected_model, user_history]) | |
msg.submit(fn=respond_async, inputs=[msg, user_history, selected_model, user_session, J_A_R_V_I_S, deep_search], outputs=[chatbot, msg, user_session], api_name=INTERNAL_AI_GET_SERVER) | |
msg.stop(fn=stop_response, inputs=[user_history, user_session], outputs=[chatbot, msg, user_session]) | |
jarvis.queue(default_concurrency_limit=2).launch(max_file_size="1mb") | |