Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,23 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
from einops import einsum
|
5 |
from tqdm import tqdm
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
model_name = 'microsoft/Phi-3-mini-4k-instruct'
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
model = AutoModelForCausalLM.from_pretrained(
|
11 |
model_name,
|
12 |
device_map=device,
|
13 |
torch_dtype="auto",
|
14 |
trust_remote_code=True,
|
|
|
15 |
)
|
16 |
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
4 |
from einops import einsum
|
5 |
from tqdm import tqdm
|
6 |
|
7 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
model_name = 'microsoft/Phi-3-mini-4k-instruct'
|
9 |
|
10 |
+
quantization_config = BitsAndBytesConfig(
|
11 |
+
load_in_4bit=True,
|
12 |
+
bnb_4bit_compute_dtype=torch.float16
|
13 |
+
)
|
14 |
+
|
15 |
model = AutoModelForCausalLM.from_pretrained(
|
16 |
model_name,
|
17 |
device_map=device,
|
18 |
torch_dtype="auto",
|
19 |
trust_remote_code=True,
|
20 |
+
quantization_config=quantization_config,
|
21 |
)
|
22 |
|
23 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|