& ChatGPT

Using Your RTX 2060 Instead of Cloud APIs for the
MCP Hackathon

Benefits of Running Models Locally on Your RTX 2060

Relying on your own GPU means you don’t need to use paid cloud APIs or provide credit card details to
third-party services. Everything runs on hardware you control. This approach offers several advantages:

* No API Costs or Quotas: You avoid hitting limits of free tiers or paying for API calls. Your RTX 2060
can handle unlimited requests (within its hardware capability) without extra fees.

* Privacy and Control: All data and computations stay on your machine. NVIDIA specifically notes that
running Al workloads locally on a PC with an RTX GPU (instead of in the cloud) lets users keep their
data private on their own PC 1 . This can be important for sensitive projects.

* Freedom to Customize Models: You can choose any open-source model (LLM or otherwise) that fits
your GPU, and even fine-tune it, without being restricted to what a service provides. This flexibility
can lead to a more innovative hackathon project that stands out.

Running AI Models Locally on an RTX 2060

To replace cloud APIs, you'll need to run inference for AI models directly on your RTX 2060. Fortunately,
many frameworks make this feasible:

* Hugging Face Transformers: This library lets you download and run models locally. You can load a
model on the GPU by specifying the device. For example, setting device=0 (or "cuda:0")ina
Transformers pipeline will run the model on your GPU 2 . This means your model (be it a language
model, image generator, etc.) will utilize the RTX 2060 for computations instead of calling an external
APL

+ Open-Source Models: Choose models that fit within 6GB VRAM. An RTX 2060 can handle small-to-
medium models, especially with optimization. In practice, this limits you to roughly ~3 billion
parameter models (or larger models that are quantized to reduce memory footprint) given the 6GB
VRAM limitation 3 . For instance, you might run a 7B parameter LLaMA 2 or Mistral model
quantized to 4-bit, which can load in ~5-6GB of VRAM. Similarly, Stable Diffusion image generation
can run on 6GB with optimized settings (e.g. 512x512 images, half-precision).

« Optimizations: Use libraries like bitsandbytes or GPTQ for 4-bit quantization, or NVIDIA's TensorRT
for accelerated inference. NVIDIA's tooling (TensorRT-LLM) is making it easier to run large language
models on consumer GPUs by optimizing memory and speed, even enabling some ChatGPT-like
models to run entirely locally on RTX GPUs 4 . Leverage these so your local APl is as fast and
efficient as possible.

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
https://blogs.nvidia.com/blog/ignite-rtx-ai-tensorrt-llm-chat-api/#:~:text=TensorRT,data%20on%20Windows%2011%20PCs
https://python.langchain.com/docs/integrations/llms/huggingface_pipelines/#:~:text=When%20running%20on%20a%20machine,1%60%20for%20CPU%20inference
https://www.databasemart.com/blog/ollama-gpu-benchmark-rtx2060?srsltid=AfmBOorxm4OXOgcM_SHfDTXEREw-yIWFBPl45AqV4-EPzOJv2U43Xpec#:~:text=
https://blogs.nvidia.com/blog/ignite-rtx-ai-tensorrt-llm-chat-api/#:~:text=An%20upcoming%20update%20to%20TensorRT,starting%20at%208GB%20of%20VRAM

Setting Up a Local API Server on Your Machine

Once your model is running locally, you'll want to expose it as an API that your hackathon project can call.
Here's how you can do that:

1. Create a Web Service: Use a lightweight web framework such as FastAPI or Flask in Python to set
up a server on your PC. This server will have endpoints (e.g., /generate_text foranLLM or|/
generate_image |for a diffusion model). When these endpoints are hit, the server will invoke your
local model. For example, a POST request to | /generate_text could pass a prompt and your
server code then calls the HuggingFace transformer pipeline (with device=0) to produce a
completion using the RTX 2060.

2. Load Models at Startup: Initialize your model once when the server starts. For instance, load the
tokenizer and model for your LLM pipeline and keep it in memory. This way each API call can reuse
the loaded model without re-loading (which would be slow). Ensure the model is on GPU memory for
speed. The HuggingFace pipeline API makes this easy: you can do something like:

import torch

from transformers import AutoTokenizer, AutoModelForCausallM, pipeline
model_name = "your-chosen-model"

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForCausallLM.from_pretrained(model_name, device_map="auto")
or .to("cuda:0")

generator = pipeline("text-generation", model=model, tokenizer=tokenizer)

This generator can now be used inside your API route to generate texts using the GPU. (For other
tasks like image generation, you would load the diffusion model similarly).

3. Test Locally: Before integrating with the hackathon app, test your API by sending sample requests
(e.g., via curl or a small test script) to ensure it's working and utilizing the GPU (you can watch GPU
usage via| nvidia-smi |to confirm).

Integrating the Local API with Your Hackathon Project

With your local API up and running, you need to hook it into your hackathon submission (Gradio app or
agent):

* Replace External Calls with Your API: If your hackathon project (for example, an Agent using
Gradio) would normally call an external service (like OpenAI's API for text or Stability Al for images),
modify it to call your local endpoints instead. In Python, you can use packages like requests to
POST to your own server. For instance:

import requests

resp = requests.post("http://YOUR_IP:8000/generate_text", json={"prompt":
user_input})

result = resp.json() # assuming your API returns JSON with the output

Make sure to handle timeouts or errors gracefully (for example, if your local server is down, the app
should not hang indefinitely).

* Networking Considerations: Since your Hugging Face Space (or wherever the hackathon app runs)
might not be on the same network as your PC, you'll likely need to expose your local server to the
internet. You can port-forward on your router or use a tunneling service. Tools like ngrok or
Cloudflare Tunnel can give a public URL that redirects to your local server. For example, using ngrok
you might get a URL like https://abc123.ngrok.io that mapsto| localhost:8000 on your
machine. Use that URL in your hackathon app so it can reach your RTX 2060 from anywhere. (Be
mindful of security: restrict the API to only the needed endpoints, and perhaps use a secret token in
headers to prevent others from abusing your API while it's public.)

+ Latency and Throughput: Calling your own API will introduce some network latency, but for a
hackathon demo this is usually fine. The bigger factor is inference speed on the 2060. If one call
takes a bit longer than an OpenAl API would, consider adjusting your app’s design (maybe generate
slightly shorter texts or lower image resolution) to keep the demo snappy. You can also preload
some results if needed for the demo to avoid long waits.

Optimizing Models for 6GB VRAM

Because the RTX 2060 has only 6GB of VRAM, you should optimize carefully to ensure you can run the
models you need:

* Choose Smaller or Quantized Models: As mentioned, you'll be looking at models in the billions of
parameters range, not tens of billions. For LLMs, a 7B parameter model with 4-bit quantization is a
sweet spot (about 5-6GB memory). In fact, one benchmarking resource suggests focusing on ~38
parameter models given a 6GB limit 3 - but with 4-bit compression, 7B is feasible. Some popular
open-source models to consider: Llama-2 7B, Mistral 7B, GPT-J 6B, or smaller variants of Stable
Diffusion (like SD 1.5) for image tasks. Make sure to download or convert these models into a format
that suits GPU (FP16 or int4).

+ Half-Precision and Offloading: Run models in half-precision (FP16) or even mixed precision to cut
memory use. The Transformers library does this by default for many models on CUDA, but ensure

torch.set_default_dtype(torch.float16) if needed. If a model still doesn't fit, you can use
device_map="auto" when loading (with | accelerate |library) to automatically split some of the
model layers onto CPU RAM 2 . This slows inference but allows larger models to run by using
system memory in addition to VRAM.

+ Batching and Asynchronous Calls: Since this is a hackathon demo, you likely don’t need to handle
many requests in parallel. It's wise to process one request at a time on the GPU to avoid running
out of memory. Gradio's queue or your own request handling can serialize calls. You might also clear
GPU memory between different tasks (e.g., unload an image model before loading a text model) if
your agent uses multiple large models sequentially.

Using Local GPU to Strengthen Your Hackathon Entry
Using your RTX 2060 as the backbone of your project can set your hackathon entry apart in a few ways:
* Innovation with Open-Source: You're demonstrating that you can integrate open-source Al models

end-to-end. This showcases skills in model handling and deployment, not just calling existing APIs.
Judges often appreciate seeing that you built a working system from the ground up.

https://www.databasemart.com/blog/ollama-gpu-benchmark-rtx2060?srsltid=AfmBOorxm4OXOgcM_SHfDTXEREw-yIWFBPl45AqV4-EPzOJv2U43Xpec#:~:text=
https://python.langchain.com/docs/integrations/llms/huggingface_pipelines/#:~:text=When%20running%20on%20a%20machine,1%60%20for%20CPU%20inference

* Features Beyond API Limits: Because you're not constrained by API costs, you can incorporate
features that might be expensive via API. For example, you could allow longer conversations or
more generations from your LLM agent, generate multiple images, or run complex multi-step
reasoning - all without worrying about running out of credits. As long as your GPU can handle it,
you're free to push the limits.

* MCP and Custom Tools: The hackathon is about Al agents and the Model Context Protocol. You can
turn your local API into an MCP-compatible tool. For instance, you could wrap your local service as a
Gradio app (since any Gradio app can act as an MCP server/tool). This means your agent could call
your local tool just like it would call an external API, but it's actually hitting your RTX 2060.
Documenting this integration - “Our agent uses a custom MCP tool hosted on a local RTX 2060 for all
Al tasks” - sounds impressive and underlines that you didn't rely on proprietary services.

* No Credit Card Needed: Practically, you save time and risk by not signing up for multiple services.
All the sponsors’ credits (Modal, OpenAl, etc.) are optional if you have your own compute. You can
mention in your project that all components run locally — a point that resonates with the ethos of
open development and could earn some kudos from the community judges (there’s even a
Community Choice Award).

Final Tips for a Winning Approach

While leveraging your RTX 2060 via a custom API can give you a technical edge, remember that winning
the hackathon also depends on creativity, usefulness, and presentation of your project. Make sure to:

* Pick a Track and Address the Criteria: Whether it's the MCP tool track, custom component, or
agent demo, clearly meet the requirements (as listed in the hackathon description). Using your own
GPU is a means to an end - the end is a great demo.

* Test Thoroughly: Ensure that the integration between your hackathon app and your local API is
rock-solid during the demo. Nothing's worse than a network glitch or bug disrupting the showcase.
Have fallback plans or prerecorded demo snippets in case the live call to your RTX 2060 doesn't
cooperate in real time.

+ Highlight the Self-Hosted Aspect: In your README or video, emphasize that no external API calls
were used - all Al logic is powered by models running on an RTX 2060 machine you set up. This will
make your project memorable to judges as a fully self-reliant solution.

+ Optimize for Demo Quality: If your local model is a bit slow or underpowered, optimize the
prompts and outputs for the demo. For instance, use prompts that the model can answer quickly
and accurately, or limit an image generation to a reasonable resolution so it finishes in a reasonable
time. You want the judges to focus on the results and capabilities, not wait around.

By using an API pointing to your own RTX 2060, you effectively become your own cloud provider. This
approach keeps you free from external constraints and showcases a deeper technical proficiency. Combined
with a creative idea and solid execution, it can significantly boost your chances of standing out and
potentially winning the hackathon. Good luck!

Sources:

* Hugging Face Transformers documentation - using local GPU for inference (specifying device ID)
2 .

https://python.langchain.com/docs/integrations/llms/huggingface_pipelines/#:~:text=When%20running%20on%20a%20machine,1%60%20for%20CPU%20inference

+ NVIDIA blog on running LLMs locally on RTX GPUs instead of the cloud (privacy and performance
benefits) 1 .

* RTX 2060 benchmarking article - notes on 6GB VRAM handling models up to ~3B parameters (need
for model size optimizations) 3 .

174 New TensorRT-LLM Release For RTX-Powered PCs | NVIDIA Blog
https://blogs.nvidia.com/blog/ignite-rtx-ai-tensorrt-lim-chat-api/

2 Hugging Face Local Pipelines | LangChain
https://python.langchain.com/docs/integrations/lims/huggingface_pipelines/

3 RTX2060 Ollama Benchmark: Best GPU for 3B LLMs Inference
https://www.databasemart.com/blog/ollama-gpu-benchmark-rtx2060?srsltid=AfmBOorxm40XOgcM_SHfDTXEREw-
YIWFBPI45AqV4-EPZOJv2U43Xpec

https://blogs.nvidia.com/blog/ignite-rtx-ai-tensorrt-llm-chat-api/#:~:text=TensorRT,data%20on%20Windows%2011%20PCs
https://www.databasemart.com/blog/ollama-gpu-benchmark-rtx2060?srsltid=AfmBOorxm4OXOgcM_SHfDTXEREw-yIWFBPl45AqV4-EPzOJv2U43Xpec#:~:text=
https://blogs.nvidia.com/blog/ignite-rtx-ai-tensorrt-llm-chat-api/#:~:text=TensorRT,data%20on%20Windows%2011%20PCs
https://blogs.nvidia.com/blog/ignite-rtx-ai-tensorrt-llm-chat-api/#:~:text=An%20upcoming%20update%20to%20TensorRT,starting%20at%208GB%20of%20VRAM
https://blogs.nvidia.com/blog/ignite-rtx-ai-tensorrt-llm-chat-api/
https://python.langchain.com/docs/integrations/llms/huggingface_pipelines/#:~:text=When%20running%20on%20a%20machine,1%60%20for%20CPU%20inference
https://python.langchain.com/docs/integrations/llms/huggingface_pipelines/
https://www.databasemart.com/blog/ollama-gpu-benchmark-rtx2060?srsltid=AfmBOorxm4OXOgcM_SHfDTXEREw-yIWFBPl45AqV4-EPzOJv2U43Xpec#:~:text=
https://www.databasemart.com/blog/ollama-gpu-benchmark-rtx2060?srsltid=AfmBOorxm4OXOgcM_SHfDTXEREw-yIWFBPl45AqV4-EPzOJv2U43Xpec
https://www.databasemart.com/blog/ollama-gpu-benchmark-rtx2060?srsltid=AfmBOorxm4OXOgcM_SHfDTXEREw-yIWFBPl45AqV4-EPzOJv2U43Xpec

	Using Your RTX 2060 Instead of Cloud APIs for the MCP Hackathon
	Benefits of Running Models Locally on Your RTX 2060
	Running AI Models Locally on an RTX 2060
	Setting Up a Local API Server on Your Machine
	Integrating the Local API with Your Hackathon Project
	Optimizing Models for 6GB VRAM
	Using Local GPU to Strengthen Your Hackathon Entry
	Final Tips for a Winning Approach

