
Strategy to Win the MCP Tool/Server Hackathon
Track

Understanding the Hackathon and Available Credits

The Gradio “Agents & MCP” Hackathon 2025 offers a dedicated track for building an MCP Tool/Server. In
Track 1 (MCP Tool/Server), participants create a Gradio app that also functions as an MCP server –
essentially a specialized tool that an AI agent can use . You're competing solo in this track, which is well-
suited to your Python and back-end skills (as opposed to Track 2’s frontend component building or Track 3’s
broad demos).

Critically, the hackathon provides generous free credits from sponsors to empower your project. Every
participant receives $250 in Modal Labs compute credits (for cloud CPU/GPU usage) and $25 in Hugging
Face API credits . Early registrants also get API credits from others: e.g. OpenAI and Anthropic ($25 each
to first 1000), Nebius cloud ($25 to first 3300), Mistral AI ($25 to first 500), and SambaNova ($25 to first 250)

. These credits are a huge boon – effectively $300+ of cloud and AI services at your disposal. The
key is to leverage them smartly to build an impressive project.

Finally, note the judging structure: each track has a $2,500 first prize and $500 second prize, plus special
sponsor awards for things like best use of Modal, LlamaIndex, etc. . This means using the sponsors’ tools
effectively (Modal’s platform, LlamaIndex for data, etc.) can increase your chances of winning either the
track or a sponsor’s special award.

Choosing a Winning Project Idea (MCP Server for ICD-10 Coding)

Given your background and interests, a strong idea is to build an MCP server for medical coding,
specifically focusing on ICD-10 diagnosis codes. This aligns with your excitement about ICD-10 and can
showcase a practical, high-impact use of AI. In healthcare, translating doctors’ free-text notes into
standardized ICD-10 codes is a time-consuming but critical task for billing and analytics . There are
~68,000 ICD-10-CM codes in use , and coding is non-trivial for humans – it requires expert training and
careful lookup of complex guidelines . An AI-powered tool to assist with this would clearly demonstrate
value.

Importantly, AI for ICD-10 coding is a hot topic. Research shows automated coding could reduce clinician
burden and improve accuracy . In fact, one study found ChatGPT-4 could achieve up to 99% accuracy on
certain specialty coding tasks , underscoring the potential. Another study, however, found that a
retrieval-based approach outperformed a generative model on broader coding data: using an embedding
model to find the closest ICD-10 code achieved ~80% accuracy, while GPT-4 only reached ~50% on the same
task . This suggests a hybrid approach (semantic search + AI reasoning) might be most robust. As an
MCP tool, your server could combine both: search a database of ICD codes for likely matches, and
optionally use an LLM to refine or explain the results.

1

2

3

4 5

6

7 8

9

8

10

11 12

13

1

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
https://huggingface.co/Agents-MCP-Hackathon#:~:text=%EF%B8%8F%20Hackathon%20Tracks
https://huggingface.co/Agents-MCP-Hackathon#:~:text=%EF%B8%8F%20Hackathon%20Tracks
https://huggingface.co/Agents-MCP-Hackathon#:~:text=,the%20first%201000%20participants%20from
https://huggingface.co/Agents-MCP-Hackathon#:~:text=,1000%20participants%20from%20Hyperbolic%20Labs
https://huggingface.co/Agents-MCP-Hackathon#:~:text=,AI
https://huggingface.co/Agents-MCP-Hackathon#:~:text=Special%20awards%3A
https://www.nature.com/articles/s41746-022-00705-7?error=cookies_not_supported&code=690add16-0abe-4317-971f-c6b5cca063b2#:~:text=Clinical%20coding%20is%20the%20task,The%20resulting%20national%20data%20are
https://www.nature.com/articles/s41746-022-00705-7?error=cookies_not_supported&code=690add16-0abe-4317-971f-c6b5cca063b2#:~:text=Clinical%20coding%20is%20a%20non,to%20ensure%20data%20consistency%3A%20textual
https://www.nature.com/articles/s41746-022-00705-7?error=cookies_not_supported&code=690add16-0abe-4317-971f-c6b5cca063b2#:~:text=the%20US%20adopts%20the%20International,potentially%20leading%20to
https://www.nature.com/articles/s41746-022-00705-7?error=cookies_not_supported&code=690add16-0abe-4317-971f-c6b5cca063b2#:~:text=Clinical%20coding%20is%20a%20non,to%20ensure%20data%20consistency%3A%20textual
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1457586/full#:~:text=Background%3A%20Accurate%20ICD,visit%20testing
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1457586/full#:~:text=Results%3A%20In%20the%20first%20round%2C,0.05
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1457586/full#:~:text=Results%3A%20In%20the%20first%20round%2C,0%20had%20higher%20accuracy
https://www.medrxiv.org/content/10.1101/2024.04.26.24306470v1.full#:~:text=Results%20The%20text,in%20predicting%20the%20correct%20code

Crucially, this idea leverages your Python expertise and does not require extensive frontend work. You’ll
build a backend service (with a simple Gradio UI for demo) that an LLM agent can query. It’s aligned with
Track 1’s aim to “extend the capabilities of your favorite LLM” via a tool – here, the capability is medical
code lookup/assignment. Moreover, it’s a fairly unique niche; while some entrants might build general-
purpose tools, a focused healthcare tool can stand out. (There are early examples of MCP servers in
healthcare – e.g. one provides drug info, PubMed search, and an ICD-10 lookup feature – showing that
this domain is recognized as useful for MCP, but your project can differentiate by depth in ICD-10 coding.)
Overall, ICD-10 coding assistance is impactful, showcases AI strengths, and gives you a clear scope for the
one-week hackathon.

Leveraging Free Credits and Technologies Effectively

To maximize your chances, you should strategically use the free credits and sponsor tools in building this
project:

Modal $250 Compute Credits: Use Modal’s cloud platform to perform heavy-lifting tasks that would
be hard on local resources. For instance, you can preprocess the entire ICD-10 dataset using Modal’s
GPUs/CPUs. One idea is to generate vector embeddings for all ICD-10 code descriptions (tens of
thousands of entries) using a high-quality model. Modal’s credits let you spin up powerful instances
to do this quickly. For example, you could use a transformer model to encode each code description
into a vector for semantic search. This upfront indexing might be computationally intensive – perfect
for Modal’s on-demand GPUs. By doing this offline, your eventual Gradio app can load the
precomputed index and respond quickly to queries. Using Modal in this way not only improves
performance, it also aligns with the Modal Choice Award criteria – you’d be demonstrating
meaningful use of their cloud platform (which could put you in the running for that $5k prize) .

Hugging Face $25 API Credits: These credits can be applied to Hugging Face’s Inference API or
other services. One way to utilize them is to query hosted models for specialized tasks. For example,
you might use a HuggingFace-hosted medical NLP model (if available) via API to complement your
tool’s functionality. However, since your main needs (embedding and possibly generation) can be
met with either open-source models or other APIs, you might reserve the HF credits for integration
testing or for image hosting if needed. Another idea: use the credits on Hugging Face Hub datasets
or AutoTrain – for instance, you could leverage a public ICD-10 code dataset (there’s one on Kaggle/
HF containing all codes and descriptions) and possibly fine-tune a lightweight model with
AutoTrain. Given your time constraints, this might be optional, but it’s worth noting you have that
budget if a Hugging Face service can boost your project (and mentioning you used HF’s platform in
your README could help with judge impressions).

OpenAI & Anthropic Credits (if received): If you were among the first 1000 sign-ups, you’ll have
$25 in OpenAI credits and $25 in Anthropic . Use these to inject some top-tier AI power into
your app:

OpenAI (GPT-3.5/4 or Embeddings): You could call the OpenAI embedding API (text-embedding-
ada-002) to vectorize text. This model was shown to be very effective for ICD coding tasks . $25
in credits is plenty to embed all ICD descriptions (OpenAI embeddings are inexpensive). If you prefer
not to rely on a remote API at runtime, consider using OpenAI during development to build your
vector index (e.g. embed all codes via script on Modal) and then use the static index in the app.

1

14

•

6

•

15

•
16

•
13

2

https://huggingface.co/Agents-MCP-Hackathon#:~:text=%EF%B8%8F%20Hackathon%20Tracks
https://github.com/Cicatriiz/healthcare-mcp-public#:~:text=,API%20calls%20and%20improve%20performance
https://huggingface.co/Agents-MCP-Hackathon#:~:text=Special%20awards%3A
https://www.kaggle.com/datasets/mrhell/icd10cm-codeset-2023#:~:text=ICD,resources%20provided%20by%20the%20CMS
https://huggingface.co/Agents-MCP-Hackathon#:~:text=,first%201000%20participants%20from%20OpenAI
https://www.medrxiv.org/content/10.1101/2024.04.26.24306470v1.full#:~:text=Results%20The%20text,in%20predicting%20the%20correct%20code

Additionally, you might use GPT-4 in a limited but impactful way – for example, once your tool finds
the top candidate codes, you could feed the original medical description and the candidate codes
into GPT-4 to select the best code and generate a brief rationale. This would wow judges with an
explanation like, “Code E11.40 – Type 2 diabetes with neuropathy – was chosen because the patient’s
description of diabetes complications matches this specific code.” Since GPT-4 is accurate in many coding
scenarios , this adds a polished touch. Just be mindful of your token budget; $25 might handle a
few hundred calls of moderate length, which should be sufficient for a demo.

Anthropic (Claude): Claude is excellent for language understanding and could similarly be used to
refine or validate code selections. For instance, Claude might handle longer inputs (if you had very
lengthy medical notes) due to its larger context window. If you have these credits, you could
experiment with Claude for summarizing a long patient note into key terms, which you then feed
into your search. However, integrating both GPT-4 and Claude may be overkill; choose one for final
integration to avoid complexity. The goal is to show you can utilize state-of-the-art LLMs to
enhance accuracy.

Other Credits (Nebius, Hyperbolic, Mistral, SambaNova): These are more optional but consider
them if they add value:

Nebius $25: Nebius is a cloud platform (with GPU offerings) – similar in use to Modal. If your Modal
usage is sufficient, you may not need Nebius. But you could use Nebius AI Studio to fine-tune a
model if desired. For example, Nebius promoted a fine-tuning credit (FINETUNE25) which could let
you fine-tune a small transformer on an ICD-10 mapping task. Given the short hackathon timeline,
fine-tuning a large model might be risky, but a quick fine-tune of a smaller model (like a T5 or
DistilBERT) on a sample of clinical text to code mappings could potentially be done within a couple of
hours on an H100 GPU. This could showcase extra effort and might improve performance on niche
cases. Use this only if time permits and you feel it will significantly boost your tool’s accuracy.
Hyperbolic $15: Hyperbolic Labs offers affordable H100 GPU time . You likely won’t need this if
Modal covers your GPU needs, but you could mention using Hyperbolic for some testing or to try out
their hosted 405B model (they advertise a Llama 3.1 405B access). For example, you might do a
fun experiment: ask their large model for coding suggestions and compare. Even if it’s not central to
your app, noting that you tested multiple AI services shows thoroughness.
Mistral AI $25: Mistral has open-source models (their 7B is public) and they offer API credits. You
could use a Mistral model for inference as a backup or to avoid reliance on closed APIs. For
instance, use the Mistral-7B or a fine-tuned variant via their API to parse medical text. If it performs
well, this could be your model of choice for the live demo (ensuring your app remains functional
even if OpenAI isn’t used). Also, mentioning Mistral usage could put you in contention for the Mistral
Choice Award (they’re giving $2k in credits as a prize) .

SambaNova $25: SambaNova might have a platform or specific models (perhaps a GPT-like model or
a data stream engine). If you have access, see if they offer a pretrained model for medical text or a
high-performance GPT-J style model. You could offload one task to this – e.g. use SambaNova’s API to
generate a summary of a complex patient note before coding. This would be another sponsor
integration point (and could make you eligible for their $500 award) . Only pursue this if their
documentation is accessible and integration is straightforward – since you noted no prior API
experience, focus on the easier wins first (OpenAI, etc.) and treat SambaNova as a bonus if time
allows.

11

•

•

•

• 17

18

•

19

•

20

3

https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1457586/full#:~:text=Results%3A%20In%20the%20first%20round%2C,0.05
https://twitter.com/hyperbolic_labs/highlights#:~:text=Highlights%20by%20Hyperbolic%20,sign%20up%20to%20be
https://hyperbolic.xyz/blog/llama-3-1-405b-support#:~:text=Access%20Llama%203,xyz%2Fmodels
https://huggingface.co/Agents-MCP-Hackathon#:~:text=Special%20awards%3A
https://huggingface.co/Agents-MCP-Hackathon#:~:text=,by%20Hugging%20Face%3A%20%24500%20USD

LlamaIndex and Retrieval Tools: The hackathon has LlamaIndex as a sponsor, and your project
naturally involves information retrieval. Consider using LlamaIndex (GPT Index) or a vector
database to manage the ICD-10 knowledge base. For example, you can load all ICD-10 code
descriptions into LlamaIndex and let it handle semantic search queries from the LLM. LlamaIndex is
designed to connect LLMs with external data, which fits your use case (it can help your MCP server
retrieve the most relevant codes for a given query). Using it might simplify some coding (it provides
high-level APIs for adding documents and querying with an LLM under the hood) and will definitely
look good to judges from LlamaIndex. Make sure to highlight in your documentation if you use it.
Even if you don’t, you’ll likely implement similar functionality (embedding + search), which you can
mention as “a custom semantic search,” but using the actual LlamaIndex library could save time and
score points.

ChatGPT Plus for Development: Although not a sponsor credit, remember you have your ChatGPT
Pro subscription. Leverage GPT-4 in ChatGPT to assist you in writing code, debugging, and
brainstorming throughout the hackathon. For instance, you can prompt ChatGPT for help with using
the Modal API or writing a function to parse ICD code data. This will speed up development given
you’re newer to some of these APIs. Just be cautious to not inadvertently paste any private API keys
during these interactions. Using ChatGPT for development support will indirectly help you maximize
the value of the credits by ensuring your implementation (Modal jobs, API calls, etc.) is done
efficiently and correctly on the first try.

Implementation Plan Overview

With the idea and resources in mind, here’s a step-by-step plan to build the project:

Gather ICD-10 Data: Obtain a comprehensive dataset of ICD-10 codes and descriptions. The CMS
and CDC provide official files, and there are convenient aggregated versions (e.g. a Kaggle dataset
with the full 2023 ICD-10-CM code set) . You can download a CSV of codes to use as your
knowledge base. Since you’re focusing on diagnosis codes (ICD-10-CM), that alone is ~70k entries.
Load this data into your app or a database.

Build the Search/Lookup Functionality: Develop a module to search the codes by disease
description or code. This has two parts:

Keyword Search: Implement a basic keyword filter (so if someone types “diabetes neuropathy”, you
can quickly narrow to codes whose description contains those terms). This ensures obvious matches
aren’t missed and provides a fallback.
Semantic Similarity Search: Use vector embeddings to find codes related to the meaning of the query.
As discussed, create embeddings for each ICD description. You can do this offline using Modal +
OpenAI’s ada-002 or an open-source model. The medRxiv research suggests embedding-based
retrieval is highly effective for this domain . Store vectors in a simple vector index (FAISS,
Annoy, or even a list with numpy if performance is okay). At query time, embed the user’s input (e.g.
“Type 2 diabetes with nerve pain in feet”) and find nearest code vectors. This will yield candidate
codes that may not share exact words but are conceptually similar – a big advantage over pure
keyword search.

•

•

1.

15

2.

3.

4.

13 21

4

https://www.kaggle.com/datasets/mrhell/icd10cm-codeset-2023#:~:text=ICD,resources%20provided%20by%20the%20CMS
https://www.medrxiv.org/content/10.1101/2024.04.26.24306470v1.full#:~:text=Results%20The%20text,in%20predicting%20the%20correct%20code
https://www.medrxiv.org/content/10.1101/2024.04.26.24306470v1.full#:~:text=The%20text,can%20offer%20improved%20accuracy%20and

Combining these, your MCP server can accept either a code (to lookup definition) or a description (to
search codes). This mirrors how some existing healthcare MCP servers handle it . For
example, if description="diabetes with neuropathy" , your tool returns a list of likely codes
(e.g. E11.40 Type 2 diabetes with diabetic neuropathy as a top match).

Integrate LLM for Refinement (Optional but Recommended): Once you have a set of candidate
codes from the search step, you can boost accuracy using an LLM:

Use GPT-4 (via OpenAI API) or Claude (Anthropic) to pick the best code from the top-N results.
Provide the model with the original query and the top few code descriptions, and prompt it to
choose which code fits best and why. Because GPT-4 is very strong at understanding nuanced
language , it can resolve ambiguities (for example, ensuring laterality or specific complication
matches the code). This addresses the scenario where multiple similar codes might come up.
Alternatively, use the LLM to explain or validate rather than select. For instance, after you
determine a best match via similarity score, you could have the LLM generate a short explanation:
“The input description mentions a diabetes complication (neuropathy), which corresponds to ICD-10 code
E11.40 – Type 2 diabetes with diabetic neuropathy.” This makes your output more user-friendly and
showcases AI understanding.

Keep this step lightweight to conserve tokens – you might only call the LLM for one or two prompts
per query. This is feasible within free credit limits, especially if using GPT-3.5 for explanation (or
GPT-4 sparingly). Also, if you didn’t get those API credits, you can skip this and still have a functional
project; the retrieval alone is valuable. But including an LLM in the loop will make your demo shine.

Build the MCP Server (Gradio App): Develop your Gradio interface such that it can both serve as a
web demo and listen for MCP requests. The hackathon organizers note “any Gradio app can also be
an MCP server/tool” with the proper setup . Concretely:

Use the gradio Python library to create a simple UI with a text box (for input description or code)
and an output area (for results). This UI is mainly for judges and your video demo, so make it clean
and easy: e.g. the user enters a medical condition description, and the app displays the top
suggested code(s) with descriptions and perhaps the LLM-generated rationale.
Implement the backend logic so that it can handle requests from an AI agent via MCP. You’ll likely
use the Gradio networking API or a lightweight server route. According to MCP standards, your
tool should expose an API endpoint (or STDIO interface) that agents like Cursor or Claude Desktop
can call. (The hackathon may provide a template or guidelines for making your space discoverable as
an MCP tool – ensure you follow those so your submission qualifies. For example, you might tag it
with “mcp-server-track” and support a standard /api route as shown in other projects .)

Test the MCP connectivity. If possible, use an MCP client (like the Cursor IDE or Claude’s agent mode)
to connect to your running server. Verify that an agent can query something like “Use the ICD10 tool
to find codes for ‘heart attack’” and your server responds with results. Recording this interaction will
be great content for your demo video (showing an AI agent successfully calling your tool).

Testing with Realistic Inputs: Create a small set of test scenarios (from your experience or
literature) to validate the tool. For example:

5.
22 23

6.

7.

11

8.

9.

10.

1

11.

12.

22

13.

14.

5

https://github.com/Cicatriiz/healthcare-mcp-public#:~:text=%23%20ICD
https://github.com/Cicatriiz/healthcare-mcp-public#:~:text=%23%20ICD
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1457586/full#:~:text=Results%3A%20In%20the%20first%20round%2C,0.05
https://huggingface.co/Agents-MCP-Hackathon#:~:text=%EF%B8%8F%20Hackathon%20Tracks
https://github.com/Cicatriiz/healthcare-mcp-public#:~:text=%23%20ICD

Simple case: “Type 1 diabetes mellitus” should return E10.9 (Type 1 diabetes without complications).
Complex case: “Patient with acute myocardial infarction (heart attack) involving left anterior
descending artery” – your tool should return something like I21.02 (Anterior wall MI) or a related
code.

Edge case: Typos or layman terms (maybe someone writes “heart attack” instead of “myocardial
infarction”). If your similarity search is good, it may catch that. If not, consider adding a small
thesaurus or spell-check step (you could even use an LLM to rephrase the query medically). Each test
ensures your pipeline (embedding search + LLM) works as expected. Use your ChatGPT subscription
to simulate some of these – you can ask GPT-4 what the correct code should be for a description and
compare to your tool’s output, to gauge accuracy.

Optimization and Caching: To make the user (and judge) experience smooth, use caching where
possible. For instance, if using OpenAI for embeddings at runtime (not recommended, but if you do),
cache embeddings of frequent queries. Since you likely embed the entire code database once (and
reuse it), that’s fine. If you call GPT for explanations, use a cache (even an in-memory dict) to avoid
re-generating for the same query repeatedly during demo/testing. Also take advantage of the
Hugging Face Space hardware: if your app needs a GPU (e.g. to run a local embedding model),
consider deploying it on a GPU-backed space using your credits or the free GPU time window. But if
you’ve precomputed everything and just do quick math and occasional API calls, a CPU space should
suffice. The Modal approach ensures heavy work is done upfront.

Polish the Documentation & Demo: As you finish implementation, allocate time to present your
project effectively:

Write a clear README.md in your Space. Include a description of what the tool does and why it’s
useful (mention the problem of manual coding and how your AI tool helps solve it). Cite the
research or stats to reinforce this – e.g., note that manual coding is laborious and AI can improve
efficiency , or mention how many codes exist to justify the need for semantic search . A brief
architecture outline (search + GPT reasoning) will show the judges your technical approach. Also, list
which sponsor resources you used (Modal, OpenAI, etc.) and express thanks – this signals you took
advantage of the credits, which judges appreciate.
Prepare the demo video (as required by track guidelines). In ~2-3 minutes, show the Gradio app
interface: input a sample medical phrase and watch it return the ICD-10 code with an explanation. If
possible, also show an AI agent using your tool (even if it’s just you simulating an agent by copying a
curl command or using the provided MCP client library). The video should highlight how seamlessly
your MCP server extends an LLM’s capability – e.g., a quick clip of Cursor AI auto-suggesting the
code after hitting your server would be golden.
If there’s a community showcase or Discord, share your project, maybe even use your personal
YouTube to talk about it. Sometimes there’s a community choice prize , so a bit of socializing can
help. Plus, feedback from others can be used to refine your app in the final days.

Final Tips for Success

Stay Focused on Core Functionality: With just a few days, prioritize the essential features (accurate
code retrieval and agent integration). It’s tempting to add extra medical tools (like drug info, or CPT

15.
16.

17.

18.

19.

20.

10 9

21. 24

22.
25

•

6

https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1457586/full#:~:text=Background%3A%20Accurate%20ICD,visit%20testing
https://www.nature.com/articles/s41746-022-00705-7?error=cookies_not_supported&code=690add16-0abe-4317-971f-c6b5cca063b2#:~:text=the%20US%20adopts%20the%20International,potentially%20leading%20to
https://huggingface.co/Agents-MCP-Hackathon#:~:text=match%20at%20L220%202,MCP%20Client%2C%20that%20is%20also
https://huggingface.co/Agents-MCP-Hackathon#:~:text=,to%20the%20most%20engaging%20participants

code lookup, etc.), but a well-executed single-feature tool often impresses more than a half-baked
multi-tool. Quality over quantity. Your ICD-10 assistant, done properly, can be very compelling.

Use Your Strengths: As a network engineer/developer, you excel at backend logic. Lean into that by
making your server robust and efficient. For example, implement solid error handling (if the user
input is unclear, maybe return a message asking for clarification – an LLM could even generate that).
Your Linux skills will help in environment setup and maybe writing a quick script to parse the ICD
data file. These “under the hood” skills will show through in the stability of your demo.

Learn the APIs with Minimal Overhead: Since you’re new to using APIs, start with the most
straightforward ones. The OpenAI Python SDK is very easy to use – a few lines with
openai.Embedding.create() or openai.ChatCompletion.create() and you’re set (the

documentation has clear examples). Similarly, Modal provides a Pythonic interface to run functions
on the cloud; you can follow their quickstart to offload tasks. Don’t get bogged down in too many
new services – use the ones that integrate cleanly with Python. The sponsors provided these credits
to remove resource barriers, so take advantage of them, and don’t be afraid to look at examples or
ask in the hackathon forum if you hit a snag. Time is short, but the community and resources are
there to help.

Validation with Domain Knowledge: While you may not be a medical expert, try to incorporate
some domain validation. For instance, you know ICD-10 has hierarchical code structure (e.g., codes
starting with “E11” are all type 2 diabetes). Simple checks like ensuring the code and description truly
match the query context can be implemented by rules or by the LLM. This will prevent obvious
mistakes (choosing a code that’s related but not actually what the description means). Even a quick
sanity-check prompt to GPT-3.5 like “Does this code describe the condition well? Yes/No” could filter
out bad answers. Little touches like that show you thought about accuracy, which judges will note.

Highlight the Use of Credits/Tech in Submission: Explicitly mention in your README or
presentation how you utilized the provided resources. For example: “This project was built using
Modal’s cloud GPUs to preprocess data, OpenAI’s GPT-4 for code validation (using hackathon API credits),
and LlamaIndex for efficient retrieval.” This not only gives credit to the sponsors (good etiquette) but
also reinforces that you made the most of the hackathon’s offerings – a trait of a resourceful hacker.

By following this strategy, you’ll deliver a project that showcases AI solving a real problem, uses cutting-
edge methods, and capitalizes on the hackathon’s free resources. A well-executed ICD-10 MCP server
can absolutely contend for the top spot in the track. Good luck, and enjoy the process of building something
impactful!

Sources:

Hackathon official guidelines and track description
Research on AI for ICD-10 coding accuracy and methods
Example of ICD-10 integration in an MCP healthcare server
Data availability for ICD-10 codes (2023 CMS dataset)
Nature overview of clinical coding complexity (need for AI)

•

•

•

•

• 1 26

• 13 11

• 14

• 15

• 8 9

7

https://huggingface.co/Agents-MCP-Hackathon#:~:text=%EF%B8%8F%20Hackathon%20Tracks
https://huggingface.co/Agents-MCP-Hackathon#:~:text=,first%201000%20participants%20from%20OpenAI
https://www.medrxiv.org/content/10.1101/2024.04.26.24306470v1.full#:~:text=Results%20The%20text,in%20predicting%20the%20correct%20code
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1457586/full#:~:text=Results%3A%20In%20the%20first%20round%2C,0.05
https://github.com/Cicatriiz/healthcare-mcp-public#:~:text=,API%20calls%20and%20improve%20performance
https://www.kaggle.com/datasets/mrhell/icd10cm-codeset-2023#:~:text=ICD,resources%20provided%20by%20the%20CMS
https://www.nature.com/articles/s41746-022-00705-7?error=cookies_not_supported&code=690add16-0abe-4317-971f-c6b5cca063b2#:~:text=Clinical%20coding%20is%20a%20non,to%20ensure%20data%20consistency%3A%20textual
https://www.nature.com/articles/s41746-022-00705-7?error=cookies_not_supported&code=690add16-0abe-4317-971f-c6b5cca063b2#:~:text=the%20US%20adopts%20the%20International,potentially%20leading%20to

Agents-MCP-Hackathon (Agents-MCP-Hackathon)
https://huggingface.co/Agents-MCP-Hackathon

Automated clinical coding: what, why, and where we are? | npj Digital Medicine
https://www.nature.com/articles/s41746-022-00705-7?error=cookies_not_supported&code=690add16-0abe-4317-971f-
c6b5cca063b2

Frontiers | AI integration in nephrology: evaluating ChatGPT for accurate ICD-10 documentation
and coding
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1457586/full

Medical Diagnosis Coding Automation: Similarity Search vs. Generative AI | medRxiv
https://www.medrxiv.org/content/10.1101/2024.04.26.24306470v1.full

GitHub - Cicatriiz/healthcare-mcp-public: A Model Context Protocol server providing AI assistants
with access to healthcare data tools, including FDA drug information, PubMed research, health topics,
clinical trials, and medical terminology lookup.
https://github.com/Cicatriiz/healthcare-mcp-public

ICD-10-CM Codeset 2023 - Kaggle
https://www.kaggle.com/datasets/mrhell/icd10cm-codeset-2023

Highlights by Hyperbolic (@hyperbolic_labs) / X
https://twitter.com/hyperbolic_labs/highlights

Access Llama 3.1 405B: Model and API for FREE - Hyperbolic
https://hyperbolic.xyz/blog/llama-3-1-405b-support

1 2 3 4 5 6 16 19 20 24 25 26

7 8 9

10 11 12

13 21

14 22 23

15

17

18

8

https://huggingface.co/Agents-MCP-Hackathon#:~:text=%EF%B8%8F%20Hackathon%20Tracks
https://huggingface.co/Agents-MCP-Hackathon#:~:text=%EF%B8%8F%20Hackathon%20Tracks
https://huggingface.co/Agents-MCP-Hackathon#:~:text=,the%20first%201000%20participants%20from
https://huggingface.co/Agents-MCP-Hackathon#:~:text=,1000%20participants%20from%20Hyperbolic%20Labs
https://huggingface.co/Agents-MCP-Hackathon#:~:text=,AI
https://huggingface.co/Agents-MCP-Hackathon#:~:text=Special%20awards%3A
https://huggingface.co/Agents-MCP-Hackathon#:~:text=,first%201000%20participants%20from%20OpenAI
https://huggingface.co/Agents-MCP-Hackathon#:~:text=Special%20awards%3A
https://huggingface.co/Agents-MCP-Hackathon#:~:text=,by%20Hugging%20Face%3A%20%24500%20USD
https://huggingface.co/Agents-MCP-Hackathon#:~:text=match%20at%20L220%202,MCP%20Client%2C%20that%20is%20also
https://huggingface.co/Agents-MCP-Hackathon#:~:text=,to%20the%20most%20engaging%20participants
https://huggingface.co/Agents-MCP-Hackathon#:~:text=,first%201000%20participants%20from%20OpenAI
https://huggingface.co/Agents-MCP-Hackathon
https://www.nature.com/articles/s41746-022-00705-7?error=cookies_not_supported&code=690add16-0abe-4317-971f-c6b5cca063b2#:~:text=Clinical%20coding%20is%20the%20task,The%20resulting%20national%20data%20are
https://www.nature.com/articles/s41746-022-00705-7?error=cookies_not_supported&code=690add16-0abe-4317-971f-c6b5cca063b2#:~:text=Clinical%20coding%20is%20a%20non,to%20ensure%20data%20consistency%3A%20textual
https://www.nature.com/articles/s41746-022-00705-7?error=cookies_not_supported&code=690add16-0abe-4317-971f-c6b5cca063b2#:~:text=the%20US%20adopts%20the%20International,potentially%20leading%20to
https://www.nature.com/articles/s41746-022-00705-7?error=cookies_not_supported&code=690add16-0abe-4317-971f-c6b5cca063b2
https://www.nature.com/articles/s41746-022-00705-7?error=cookies_not_supported&code=690add16-0abe-4317-971f-c6b5cca063b2
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1457586/full#:~:text=Background%3A%20Accurate%20ICD,visit%20testing
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1457586/full#:~:text=Results%3A%20In%20the%20first%20round%2C,0.05
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1457586/full#:~:text=Results%3A%20In%20the%20first%20round%2C,0%20had%20higher%20accuracy
https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1457586/full
https://www.medrxiv.org/content/10.1101/2024.04.26.24306470v1.full#:~:text=Results%20The%20text,in%20predicting%20the%20correct%20code
https://www.medrxiv.org/content/10.1101/2024.04.26.24306470v1.full#:~:text=The%20text,can%20offer%20improved%20accuracy%20and
https://www.medrxiv.org/content/10.1101/2024.04.26.24306470v1.full
https://github.com/Cicatriiz/healthcare-mcp-public#:~:text=,API%20calls%20and%20improve%20performance
https://github.com/Cicatriiz/healthcare-mcp-public#:~:text=%23%20ICD
https://github.com/Cicatriiz/healthcare-mcp-public#:~:text=%23%20ICD
https://github.com/Cicatriiz/healthcare-mcp-public
https://www.kaggle.com/datasets/mrhell/icd10cm-codeset-2023#:~:text=ICD,resources%20provided%20by%20the%20CMS
https://www.kaggle.com/datasets/mrhell/icd10cm-codeset-2023
https://twitter.com/hyperbolic_labs/highlights#:~:text=Highlights%20by%20Hyperbolic%20,sign%20up%20to%20be
https://twitter.com/hyperbolic_labs/highlights
https://hyperbolic.xyz/blog/llama-3-1-405b-support#:~:text=Access%20Llama%203,xyz%2Fmodels
https://hyperbolic.xyz/blog/llama-3-1-405b-support

	Strategy to Win the MCP Tool/Server Hackathon Track
	Understanding the Hackathon and Available Credits
	Choosing a Winning Project Idea (MCP Server for ICD-10 Coding)
	Leveraging Free Credits and Technologies Effectively
	Implementation Plan Overview
	Final Tips for Success

