* [x] Initialize new Hugging Face Space with Gradio SDK 5.x * Add `mcp-server-track` tag in `README.md` * [ ] Write Python function `symptom_to_diagnosis(symptom_text)` * Use OpenAI or Anthropic API to generate JSON * Format prompt to request JSON output * Parse model response into Python dict * Handle JSON formatting quirks (trim extra text, use `json.loads`) * Implement fallback rule-based mapping for demo cases * [ ] Test `symptom_to_diagnosis` function * Input common symptom examples and combinations * Verify relevance and correctness of ICD codes and diagnoses * Tweak prompt to improve specificity and JSON validity * [ ] Define confidence score methodology * Decide whether to use model’s self-reported scores or rank order as proxy * Document how confidence is calculated and interpreted * [ ] Integrate function into Gradio Blocks interface * Use `gr.Interface` or `gr.ChatInterface` to accept symptom text input and display JSON output * Configure Gradio app metadata to expose MCP endpoint * [ ] Build demonstration client or script (optional) * Create minimal client using `gradio.Client` or `requests` to call Space’s prediction API * Alternatively, build a second Gradio Space as a simple chatbot that calls the MCP tool * Prepare screen recording showing AI agent (e.g., Claude Desktop) calling the MCP endpoint with example query * [ ] Update `README.md` documentation * Describe tool functionality and usage examples * Include `mcp-server-track` tag, link to video or client demo * List technologies used (e.g., “OpenAI GPT-4 API for symptom→ICD mapping”) * [ ] Configure OpenAI/Anthropic API usage * Use cheaper models (e.g., GPT-3.5) during development * Reserve GPT-4 or Claude-2 for final demo queries to conserve credits * [ ] Evaluate Hugging Face / Mistral credits for alternative inference * Identify open ICD-10 prediction models on HF Inference API (e.g., `AkshatSurolia/ICD-10-Code-Prediction`) * Consider running open-source models on Mistral if time allows * [ ] Plan Modal Labs usage for cloud compute (optional) * Pre-compute ICD-10 embeddings in Modal job if semantic search is added * Host backend microservice or Gradio app on Modal if HF Space resources are insufficient * [ ] Reserve Nebius or Hyperbolic Labs credits for GPU-intensive tasks (if needed) * Spin up GPU instance to host or fine-tune open-source model only if HF Space times out * [ ] Consider LlamaIndex integration for retrieval-augmented generation (bonus) * Load ICD-10 dataset into LlamaIndex and test semantic search for candidate codes * Implement minimal index of common diagnoses for demo if time permits * [ ] Record and document final demo * Capture symptom input, MCP tool invocation, and JSON output in a short video * Host video link in `README.md`