Spaces:
Running
Running
mvp checklist
Browse files- docs/plans/mvp_checklist.md +56 -0
docs/plans/mvp_checklist.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
* [x] Initialize new Hugging Face Space with Gradio SDK 5.x
|
2 |
+
|
3 |
+
* Add `mcp-server-track` tag in `README.md`
|
4 |
+
* [ ] Write Python function `symptom_to_diagnosis(symptom_text)`
|
5 |
+
|
6 |
+
* Use OpenAI or Anthropic API to generate JSON
|
7 |
+
* Format prompt to request JSON output
|
8 |
+
* Parse model response into Python dict
|
9 |
+
* Handle JSON formatting quirks (trim extra text, use `json.loads`)
|
10 |
+
* Implement fallback rule-based mapping for demo cases
|
11 |
+
* [ ] Test `symptom_to_diagnosis` function
|
12 |
+
|
13 |
+
* Input common symptom examples and combinations
|
14 |
+
* Verify relevance and correctness of ICD codes and diagnoses
|
15 |
+
* Tweak prompt to improve specificity and JSON validity
|
16 |
+
* [ ] Define confidence score methodology
|
17 |
+
|
18 |
+
* Decide whether to use model’s self-reported scores or rank order as proxy
|
19 |
+
* Document how confidence is calculated and interpreted
|
20 |
+
* [ ] Integrate function into Gradio Blocks interface
|
21 |
+
|
22 |
+
* Use `gr.Interface` or `gr.ChatInterface` to accept symptom text input and display JSON output
|
23 |
+
* Configure Gradio app metadata to expose MCP endpoint
|
24 |
+
* [ ] Build demonstration client or script (optional)
|
25 |
+
|
26 |
+
* Create minimal client using `gradio.Client` or `requests` to call Space’s prediction API
|
27 |
+
* Alternatively, build a second Gradio Space as a simple chatbot that calls the MCP tool
|
28 |
+
* Prepare screen recording showing AI agent (e.g., Claude Desktop) calling the MCP endpoint with example query
|
29 |
+
* [ ] Update `README.md` documentation
|
30 |
+
|
31 |
+
* Describe tool functionality and usage examples
|
32 |
+
* Include `mcp-server-track` tag, link to video or client demo
|
33 |
+
* List technologies used (e.g., “OpenAI GPT-4 API for symptom→ICD mapping”)
|
34 |
+
* [ ] Configure OpenAI/Anthropic API usage
|
35 |
+
|
36 |
+
* Use cheaper models (e.g., GPT-3.5) during development
|
37 |
+
* Reserve GPT-4 or Claude-2 for final demo queries to conserve credits
|
38 |
+
* [ ] Evaluate Hugging Face / Mistral credits for alternative inference
|
39 |
+
|
40 |
+
* Identify open ICD-10 prediction models on HF Inference API (e.g., `AkshatSurolia/ICD-10-Code-Prediction`)
|
41 |
+
* Consider running open-source models on Mistral if time allows
|
42 |
+
* [ ] Plan Modal Labs usage for cloud compute (optional)
|
43 |
+
|
44 |
+
* Pre-compute ICD-10 embeddings in Modal job if semantic search is added
|
45 |
+
* Host backend microservice or Gradio app on Modal if HF Space resources are insufficient
|
46 |
+
* [ ] Reserve Nebius or Hyperbolic Labs credits for GPU-intensive tasks (if needed)
|
47 |
+
|
48 |
+
* Spin up GPU instance to host or fine-tune open-source model only if HF Space times out
|
49 |
+
* [ ] Consider LlamaIndex integration for retrieval-augmented generation (bonus)
|
50 |
+
|
51 |
+
* Load ICD-10 dataset into LlamaIndex and test semantic search for candidate codes
|
52 |
+
* Implement minimal index of common diagnoses for demo if time permits
|
53 |
+
* [ ] Record and document final demo
|
54 |
+
|
55 |
+
* Capture symptom input, MCP tool invocation, and JSON output in a short video
|
56 |
+
* Host video link in `README.md`
|