gpaasch commited on
Commit
1bd8cdf
·
1 Parent(s): 5957a6c

mvp checklist

Browse files
Files changed (1) hide show
  1. docs/plans/mvp_checklist.md +56 -0
docs/plans/mvp_checklist.md ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ * [x] Initialize new Hugging Face Space with Gradio SDK 5.x
2
+
3
+ * Add `mcp-server-track` tag in `README.md`
4
+ * [ ] Write Python function `symptom_to_diagnosis(symptom_text)`
5
+
6
+ * Use OpenAI or Anthropic API to generate JSON
7
+ * Format prompt to request JSON output
8
+ * Parse model response into Python dict
9
+ * Handle JSON formatting quirks (trim extra text, use `json.loads`)
10
+ * Implement fallback rule-based mapping for demo cases
11
+ * [ ] Test `symptom_to_diagnosis` function
12
+
13
+ * Input common symptom examples and combinations
14
+ * Verify relevance and correctness of ICD codes and diagnoses
15
+ * Tweak prompt to improve specificity and JSON validity
16
+ * [ ] Define confidence score methodology
17
+
18
+ * Decide whether to use model’s self-reported scores or rank order as proxy
19
+ * Document how confidence is calculated and interpreted
20
+ * [ ] Integrate function into Gradio Blocks interface
21
+
22
+ * Use `gr.Interface` or `gr.ChatInterface` to accept symptom text input and display JSON output
23
+ * Configure Gradio app metadata to expose MCP endpoint
24
+ * [ ] Build demonstration client or script (optional)
25
+
26
+ * Create minimal client using `gradio.Client` or `requests` to call Space’s prediction API
27
+ * Alternatively, build a second Gradio Space as a simple chatbot that calls the MCP tool
28
+ * Prepare screen recording showing AI agent (e.g., Claude Desktop) calling the MCP endpoint with example query
29
+ * [ ] Update `README.md` documentation
30
+
31
+ * Describe tool functionality and usage examples
32
+ * Include `mcp-server-track` tag, link to video or client demo
33
+ * List technologies used (e.g., “OpenAI GPT-4 API for symptom→ICD mapping”)
34
+ * [ ] Configure OpenAI/Anthropic API usage
35
+
36
+ * Use cheaper models (e.g., GPT-3.5) during development
37
+ * Reserve GPT-4 or Claude-2 for final demo queries to conserve credits
38
+ * [ ] Evaluate Hugging Face / Mistral credits for alternative inference
39
+
40
+ * Identify open ICD-10 prediction models on HF Inference API (e.g., `AkshatSurolia/ICD-10-Code-Prediction`)
41
+ * Consider running open-source models on Mistral if time allows
42
+ * [ ] Plan Modal Labs usage for cloud compute (optional)
43
+
44
+ * Pre-compute ICD-10 embeddings in Modal job if semantic search is added
45
+ * Host backend microservice or Gradio app on Modal if HF Space resources are insufficient
46
+ * [ ] Reserve Nebius or Hyperbolic Labs credits for GPU-intensive tasks (if needed)
47
+
48
+ * Spin up GPU instance to host or fine-tune open-source model only if HF Space times out
49
+ * [ ] Consider LlamaIndex integration for retrieval-augmented generation (bonus)
50
+
51
+ * Load ICD-10 dataset into LlamaIndex and test semantic search for candidate codes
52
+ * Implement minimal index of common diagnoses for demo if time permits
53
+ * [ ] Record and document final demo
54
+
55
+ * Capture symptom input, MCP tool invocation, and JSON output in a short video
56
+ * Host video link in `README.md`