MedCodeMCP / app.py
gpaasch's picture
Extract the string content from the LLM response object before passing it to `format_response_for_user`, and ensure it is a dictionary.
f4dc3d2
raw
history blame
7.55 kB
import gradio as gr
from utils.model_configuration_utils import select_best_model, ensure_model
from services.llm import build_llm
from utils.voice_input_utils import update_live_transcription, format_response_for_user
from services.embeddings import configure_embeddings
from services.indexing import create_symptom_index
import torchaudio.transforms as T
import re
import logging, sys
import json
logging.basicConfig(stream=sys.stdout, level=logging.INFO, force=True)
logger = logging.getLogger(__name__)
# ========== Model setup ==========
MODEL_NAME, REPO_ID = select_best_model()
model_path = ensure_model()
print(f"Using model: {MODEL_NAME} from {REPO_ID}", flush=True)
print(f"Model path: {model_path}", flush=True)
# ========== LLM initialization ==========
print("\n<<< before build_llm: ", flush=True)
llm = build_llm(model_path)
print(">>> after build_llm", flush=True)
# ========== Embeddings & index setup ==========
print("\n<<< before configure_embeddings: ", flush=True)
configure_embeddings()
print(">>> after configure_embeddings", flush=True)
print("Embeddings configured and ready", flush=True)
print("\n<<< before create_symptom_index: ", flush=True)
symptom_index = create_symptom_index()
print(">>> after create_symptom_index", flush=True)
print("Symptom index built successfully. Ready for queries.", flush=True)
# ========== Prompt template ==========
SYSTEM_PROMPT = (
"You are a medical assistant helping a user find the most relevant ICD-10 code based on their symptoms.\n",
"At each turn, determine the top three most relevant ICD-10 codes based on input from the user.\n",
"Additionally, provide a 1 through 100 score of how confident you are in the relevancy of each code.\n",
"Continually ask questions to the user to raise or lower your confidence of each code.\n",
"Replace low-confidence codes with new ones as you learn more.\n",
"Your goal is to find the most relevant codes with high confidence.\n",
)
# ========== Generator handler ==========
def on_submit(symptoms_text, history):
log = []
print("on_submit called", flush=True)
# Placeholder
msg = "πŸ” Received input"
log.append(msg)
print(msg, flush=True)
history = history + [{"role": "assistant", "content": "Processing your request..."}]
yield history, None, "\n".join(log)
# Validate
if not symptoms_text.strip():
msg = "❌ No symptoms provided"
log.append(msg)
print(msg, flush=True)
result = {"error": "No input provided", "diagnoses": [], "confidences": [], "follow_up": []}
yield history, result, "\n".join(log)
return
# Clean input
cleaned = symptoms_text.strip()
msg = f"πŸ”„ Cleaned text: {cleaned}"
log.append(msg)
print(msg, flush=True)
yield history, None, "\n".join(log)
# Semantic query
msg = "πŸ” Running semantic query"
log.append(msg)
print(msg, flush=True)
yield history, None, "\n".join(log)
qe = symptom_index.as_query_engine(retriever_kwargs={"similarity_top_k": 5})
hits = qe.query(cleaned)
msg = f"πŸ” Retrieved context entries"
log.append(msg)
print(msg, flush=True)
history = history + [{"role": "assistant", "content": msg}]
yield history, None, "\n".join(log)
# Build prompt with minimal context
context_list = []
for node in getattr(hits, 'source_nodes', [])[:3]:
md = getattr(node, 'metadata', {}) or {}
context_list.append(f"{md.get('code','')}: {md.get('description','')}")
context_text = "\n".join(context_list)
prompt = "\n".join([
f"{SYSTEM_PROMPT}",
f"User symptoms: '{cleaned}'",
f"Relevant ICD-10 context:\n{context_text}",
"Respond with your top 3 ICD-10 codes and their confidence scores.",
"Think step by step and explain your reasoning."
])
msg = "✏️ Prompt built"
log.append(msg)
print(msg, flush=True)
yield history, None, "\n".join(log)
# Call LLM
response = llm.complete(prompt)
raw = response
# Extract text from CompletionResponse if needed
if hasattr(raw, "text"):
raw = raw.text
elif hasattr(raw, "content"):
raw = raw.content
# Now ensure it's a dict
if isinstance(raw, str):
try:
raw = json.loads(raw)
except Exception:
raw = {"diagnoses": [], "confidences": [], "follow_up": raw}
assistant_msg = format_response_for_user(raw)
history = history + [{"role": "assistant", "content": assistant_msg}]
msg = "βœ… Final response appended"
log.append(msg)
print(msg, flush=True)
yield history, raw, "\n".join(log)
# ========== Gradio UI ==========
with gr.Blocks(theme="default") as demo:
gr.Markdown("""
# πŸ₯ Medical Symptom to ICD-10 Code Assistant
## Describe symptoms by typing or speaking.
Debug log updates live below.
"""
)
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="Type your symptoms",
placeholder="I'm feeling under the weather...",
lines=3
)
microphone = gr.Audio(
sources=["microphone"],
streaming=True,
type="numpy",
label="Or speak your symptoms..."
)
submit_btn = gr.Button("Submit", variant="primary")
clear_btn = gr.Button("Clear Chat", variant="secondary")
chatbot = gr.Chatbot(
label="Medical Consultation",
height=500,
type="messages"
)
json_output = gr.JSON(label="Diagnosis JSON")
debug_box = gr.Textbox(label="Debug log", lines=10)
with gr.Column(scale=1):
with gr.Accordion("API Keys (optional)", open=False):
api_key = gr.Textbox(label="OpenAI Key", type="password")
model_selector = gr.Dropdown(
choices=["OpenAI","Modal","Anthropic","MistralAI","Nebius","Hyperbolic","SambaNova"],
value="OpenAI",
label="Model Provider"
)
temperature = gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature")
# Bindings
submit_btn.click(
fn=on_submit,
inputs=[text_input, chatbot],
outputs=[chatbot, json_output, debug_box],
queue=True
)
clear_btn.click(
lambda: (None, {}, ""),
None,
[chatbot, json_output, debug_box],
queue=False
)
microphone.stream(
fn=update_live_transcription,
inputs=[microphone],
outputs=[text_input],
queue=True
)
# --- About the Creator ---
gr.Markdown("""
---
### πŸ‘‹ About the Creator
Hi! I'm Graham Paasch, an experienced technology professional!
πŸŽ₯ **Check out my YouTube channel** for more tech content:
[Subscribe to my channel](https://www.youtube.com/channel/UCg3oUjrSYcqsL9rGk1g_lPQ)
πŸ’Ό **Looking for a skilled developer?**
I'm currently seeking new opportunities! View my experience and connect on [LinkedIn](https://www.linkedin.com/in/grahampaasch/)
⭐ If you found this tool helpful, please consider:
- Subscribing to my YouTube channel
- Connecting on LinkedIn
- Sharing this tool with others in healthcare tech
"""
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, share=True, show_api=True, mcp_server=True)