|
import os
|
|
import logging
|
|
from config.config import ConfigConstants
|
|
from langchain_huggingface import HuggingFaceEmbeddings
|
|
from langchain_community.vectorstores import FAISS
|
|
|
|
class VectorStoreManager:
|
|
def __init__(self, embedding_path="embeddings.faiss"):
|
|
"""
|
|
Initialize the vector store manager.
|
|
|
|
Args:
|
|
embedding_path (str): Path to save/load the FAISS index.
|
|
"""
|
|
self.embedding_path = embedding_path
|
|
self.embedding_model = HuggingFaceEmbeddings(model_name=ConfigConstants.EMBEDDING_MODEL_NAME)
|
|
self.vector_store = self._initialize_vector_store()
|
|
|
|
def _initialize_vector_store(self):
|
|
"""Initialize or load the FAISS vector store."""
|
|
if os.path.exists(self.embedding_path):
|
|
logging.info("Loading embeddings from local file")
|
|
return FAISS.load_local(
|
|
self.embedding_path,
|
|
self.embedding_model,
|
|
allow_dangerous_deserialization=True
|
|
)
|
|
else:
|
|
'''logging.info("Creating new vector store")
|
|
# Return an empty vector store; it will be populated when documents are added
|
|
return FAISS.from_texts(
|
|
texts=[""], # Dummy text to initialize
|
|
embedding=self.embedding_model,
|
|
metadatas=[{"source": "init", "doc_id": "init"}]
|
|
)'''
|
|
logging.info("Creating new vector store (unpopulated)")
|
|
return None
|
|
|
|
def add_documents(self, documents):
|
|
"""
|
|
Add new documents to the vector store and save it.
|
|
|
|
Args:
|
|
documents (list): List of dictionaries with 'text', 'source', and 'doc_id'.
|
|
"""
|
|
if not documents:
|
|
return
|
|
|
|
texts = [doc['text'] for doc in documents]
|
|
metadatas = [{'source': doc['source'], 'doc_id': doc['doc_id']} for doc in documents]
|
|
|
|
logging.info("Adding new documents to vector store")
|
|
|
|
if not self.vector_store:
|
|
self.vector_store = FAISS.from_texts(
|
|
texts=texts,
|
|
embedding=self.embedding_model,
|
|
metadatas=metadatas
|
|
)
|
|
else:
|
|
self.vector_store.add_texts(texts=texts, metadatas=metadatas)
|
|
|
|
self.vector_store.save_local(self.embedding_path)
|
|
logging.info(f"Vector store updated and saved to {self.embedding_path}")
|
|
|
|
def search(self, query, doc_id, k=10):
|
|
"""
|
|
Search the vector store for relevant chunks, filtered by doc_id.
|
|
|
|
Args:
|
|
query (str): The user's query.
|
|
doc_id (str): The document ID to filter by.
|
|
k (int): Number of results to return.
|
|
|
|
Returns:
|
|
list: List of relevant document chunks with metadata and scores.
|
|
"""
|
|
if not self.vector_store:
|
|
return []
|
|
|
|
try:
|
|
query = " ".join(query.lower().split())
|
|
|
|
filter_fn = lambda metadata: metadata['doc_id'] == doc_id
|
|
|
|
|
|
results = self.vector_store.similarity_search_with_score(
|
|
query=query,
|
|
k=k,
|
|
filter=filter_fn
|
|
)
|
|
|
|
|
|
return [{'text': doc.page_content, 'metadata': doc.metadata, 'score': score} for doc, score in results]
|
|
|
|
except Exception as e:
|
|
logging.error(f"Error during vector store search: {str(e)}")
|
|
return [] |