|
import logging
|
|
import os
|
|
from typing import Any, Dict, List
|
|
import uuid
|
|
from data.document_loader import DocumentLoader
|
|
from data.pdf_reader import PDFReader
|
|
from retriever.chunk_documents import chunk_documents
|
|
from retriever.vector_store_manager import VectorStoreManager
|
|
|
|
class DocumentManager:
|
|
def __init__(self):
|
|
self.doc_loader = DocumentLoader()
|
|
self.pdf_reader = PDFReader()
|
|
self.vector_manager = VectorStoreManager()
|
|
self.uploaded_documents = {}
|
|
self.chunked_documents = {}
|
|
self.document_ids = {}
|
|
logging.info("DocumentManager initialized")
|
|
|
|
def process_document(self, file):
|
|
"""
|
|
Process an uploaded file: load, read PDF, chunk, and store in vector store.
|
|
Returns: (status_message, page_list, filename, doc_id)
|
|
"""
|
|
try:
|
|
if file is None:
|
|
return "No file uploaded", None, None
|
|
|
|
logging.info(f"Processing file: {file}")
|
|
|
|
|
|
file_path = self.doc_loader.load_file(file)
|
|
filename = os.path.basename(file_path)
|
|
|
|
|
|
page_list = self.pdf_reader.read_pdf(file_path)
|
|
|
|
|
|
self.uploaded_documents[filename] = file_path
|
|
|
|
|
|
doc_id = str(uuid.uuid4())
|
|
self.document_ids[filename] = doc_id
|
|
|
|
|
|
chunks = chunk_documents(page_list, doc_id, chunk_size=2000, chunk_overlap=300)
|
|
self.chunked_documents[filename] = chunks
|
|
|
|
|
|
self.vector_manager.add_documents(chunks)
|
|
|
|
return (
|
|
f"Successfully loaded {filename} with {len(page_list)} pages",
|
|
filename,
|
|
doc_id
|
|
)
|
|
|
|
except Exception as e:
|
|
logging.error(f"Error processing document: {str(e)}")
|
|
return f"Error: {str(e)}", [], None, None
|
|
|
|
def get_uploaded_documents(self):
|
|
"""Return the list of uploaded document filenames."""
|
|
return list(self.uploaded_documents.keys())
|
|
|
|
def get_chunks(self, filename):
|
|
"""Return chunks for a given filename."""
|
|
return self.chunked_documents.get(filename, [])
|
|
|
|
def get_document_id(self, filename):
|
|
"""Return the document ID for a given filename."""
|
|
return self.document_ids.get(filename, None)
|
|
|
|
def retrieve_top_k(self, query: str, selected_docs: List[str], k: int = 5) -> List[Dict[str, Any]]:
|
|
"""
|
|
Retrieve the top K chunks across the selected documents based on the user's query.
|
|
|
|
Args:
|
|
query (str): The user's query.
|
|
selected_docs (List[str]): List of selected document filenames from the dropdown.
|
|
k (int): Number of top results to return (default is 5).
|
|
|
|
Returns:
|
|
List[Dict[str, Any]]: List of top K chunks with their text, metadata, and scores.
|
|
"""
|
|
if not selected_docs:
|
|
logging.warning("No documents selected for retrieval")
|
|
return []
|
|
|
|
all_results = []
|
|
for filename in selected_docs:
|
|
doc_id = self.get_document_id(filename)
|
|
if not doc_id:
|
|
logging.warning(f"No document ID found for filename: {filename}")
|
|
continue
|
|
|
|
|
|
results = self.vector_manager.search(query, doc_id, k=k)
|
|
all_results.extend(results)
|
|
|
|
|
|
all_results.sort(key=lambda x: x['score'], reverse=True)
|
|
top_k_results = all_results[:k]
|
|
|
|
|
|
|
|
logging.info(f"Retrieved top {k} documents:")
|
|
for i, result in enumerate(top_k_results, 1):
|
|
doc_id = result['metadata'].get('doc_id', 'Unknown')
|
|
filename = next((name for name, d_id in self.document_ids.items() if d_id == doc_id), 'Unknown')
|
|
logging.info(f"{i}. Filename: {filename}, Doc ID: {doc_id}, Score: {result['score']:.4f}, Text: {result['text'][:200]}...")
|
|
|
|
return top_k_results
|
|
|
|
def retrieve_summary_chunks(self, query: str, doc_id : str, k: int = 10):
|
|
logging.info(f"Retrieving {k} chunks for summary: {query}, Document Id: {doc_id}")
|
|
results = self.vector_manager.search(query, doc_id, k=k)
|
|
top_k_results = results[:k]
|
|
logging.info(f"Retrieved {len(top_k_results)} chunks for summary")
|
|
|
|
return top_k_results |