|
import logging
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
import hashlib
|
|
|
|
def chunk_documents(page_list, doc_id, chunk_size=1000, chunk_overlap=200):
|
|
"""
|
|
Chunk a list of page contents into smaller segments with document ID metadata.
|
|
|
|
Args:
|
|
page_list (list): List of strings, each string being the content of a page.
|
|
doc_id (str): Unique identifier for the document.
|
|
chunk_size (int): Maximum size of each chunk (default: 1000 characters).
|
|
chunk_overlap (int): Overlap between chunks (default: 200 characters).
|
|
|
|
Returns:
|
|
list: List of dictionaries, each containing 'text', 'source', and 'doc_id'.
|
|
"""
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
|
documents = []
|
|
seen_hashes = set()
|
|
|
|
for page_num, page_content in enumerate(page_list, start=1):
|
|
if not page_content or not isinstance(page_content, str):
|
|
continue
|
|
|
|
|
|
chunks = text_splitter.split_text(page_content)
|
|
|
|
for i, chunk in enumerate(chunks):
|
|
|
|
chunk_hash = hashlib.sha256(chunk.encode()).hexdigest()
|
|
|
|
|
|
if chunk_hash in seen_hashes:
|
|
continue
|
|
|
|
|
|
source = f"doc_{doc_id}_page_{page_num}_chunk_{i}"
|
|
|
|
|
|
documents.append({
|
|
'text': chunk,
|
|
'source': source,
|
|
'doc_id': doc_id
|
|
})
|
|
seen_hashes.add(chunk_hash)
|
|
|
|
logging.info(f"Chunking of documents is done. Chunked the document to {len(documents)} numbers of chunks")
|
|
return documents |