TalkToYourDocument / retriever /chunk_documents.py
gourisankar85's picture
Upload 13 files
e6cc6f7 verified
raw
history blame contribute delete
2.09 kB
import logging
from langchain.text_splitter import RecursiveCharacterTextSplitter
import hashlib
def chunk_documents(page_list, doc_id, chunk_size=1000, chunk_overlap=200):
"""
Chunk a list of page contents into smaller segments with document ID metadata.
Args:
page_list (list): List of strings, each string being the content of a page.
doc_id (str): Unique identifier for the document.
chunk_size (int): Maximum size of each chunk (default: 1000 characters).
chunk_overlap (int): Overlap between chunks (default: 200 characters).
Returns:
list: List of dictionaries, each containing 'text', 'source', and 'doc_id'.
"""
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
documents = []
seen_hashes = set() # Track hashes of chunks to avoid duplicates
for page_num, page_content in enumerate(page_list, start=1): # Start page numbering at 1
if not page_content or not isinstance(page_content, str):
continue # Skip empty or invalid pages
# Split the page content into chunks
chunks = text_splitter.split_text(page_content)
for i, chunk in enumerate(chunks):
# Generate a unique hash for the chunk
chunk_hash = hashlib.sha256(chunk.encode()).hexdigest()
# Skip if the chunk is a duplicate
if chunk_hash in seen_hashes:
continue
# Create source identifier (e.g., "doc_123_page_1_chunk_0")
source = f"doc_{doc_id}_page_{page_num}_chunk_{i}"
# Add the chunk with doc_id as metadata
documents.append({
'text': chunk,
'source': source,
'doc_id': doc_id
})
seen_hashes.add(chunk_hash)
logging.info(f"Chunking of documents is done. Chunked the document to {len(documents)} numbers of chunks")
return documents