File size: 13,834 Bytes
e6cc6f7
 
 
 
 
 
 
010d51d
 
e6cc6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
010d51d
e6cc6f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecc9585
e6cc6f7
 
 
010d51d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import logging
import os
from typing import List, Dict, Any, Tuple
from langchain_groq import ChatGroq
from langchain.chains import RetrievalQA
from langchain_core.documents import Document
from langchain_core.retrievers import BaseRetriever
from langchain.chains.summarize import load_summarize_chain
from langchain.prompts import PromptTemplate

class LLMManager:
    DEFAULT_MODEL = "gemma2-9b-it"  # Set the default model name

    def __init__(self):
        self.generation_llm = None
        logging.info("LLMManager initialized")

        # Initialize the default model during construction
        try:
            self.initialize_generation_llm(self.DEFAULT_MODEL)
            logging.info(f"Initialized default LLM model: {self.DEFAULT_MODEL}")
        except ValueError as e:
            logging.error(f"Failed to initialize default LLM model: {str(e)}")

    def initialize_generation_llm(self, model_name: str) -> None:
        """

        Initialize the generation LLM using the Groq API.



        Args:

            model_name (str): The name of the model to use for generation.



        Raises:

            ValueError: If GROQ_API_KEY is not set.

        """
        api_key = os.getenv("GROQ_API_KEY")
        if not api_key:
            raise ValueError("GROQ_API_KEY is not set. Please add it in your environment variables.")
        
        os.environ["GROQ_API_KEY"] = api_key
        self.generation_llm = ChatGroq(model=model_name, temperature=0.7)
        self.generation_llm.name = model_name
        logging.info(f"Generation LLM {model_name} initialized")

    def reinitialize_llm(self, model_name: str) -> str:
        """

        Reinitialize the LLM with a new model name.



        Args:

            model_name (str): The name of the new model to initialize.



        Returns:

            str: Status message indicating success or failure.

        """
        try:
            self.initialize_generation_llm(model_name)
            return f"LLM model changed to {model_name}"
        except ValueError as e:
            logging.error(f"Failed to reinitialize LLM with model {model_name}: {str(e)}")
            return f"Error: Failed to change LLM model: {str(e)}"

    def generate_response(self, question: str, relevant_docs: List[Dict[str, Any]]) -> Tuple[str, List[Document]]:
        """

        Generate a response using the generation LLM based on the question and relevant documents.



        Args:

            question (str): The user's query.

            relevant_docs (List[Dict[str, Any]]): List of relevant document chunks with text, metadata, and scores.



        Returns:

            Tuple[str, List[Document]]: The LLM's response and the source documents used.



        Raises:

            ValueError: If the generation LLM is not initialized.

            Exception: If there's an error during the QA chain invocation.

        """
        if not self.generation_llm:
            raise ValueError("Generation LLM is not initialized. Call initialize_generation_llm first.")

        # Convert the relevant documents into LangChain Document objects
        documents = [
            Document(page_content=doc['text'], metadata=doc['metadata'])
            for doc in relevant_docs
        ]

        # Create a proper retriever by subclassing BaseRetriever
        class SimpleRetriever(BaseRetriever):
            def __init__(self, docs: List[Document], **kwargs):
                super().__init__(**kwargs)  # Pass kwargs to BaseRetriever
                self._docs = docs  # Use a private attribute to store docs
                logging.debug(f"SimpleRetriever initialized with {len(docs)} documents")

            def _get_relevant_documents(self, query: str) -> List[Document]:
                logging.debug(f"SimpleRetriever._get_relevant_documents called with query: {query}")
                return self._docs

            async def _aget_relevant_documents(self, query: str) -> List[Document]:
                logging.debug(f"SimpleRetriever._aget_relevant_documents called with query: {query}")
                return self._docs

        # Instantiate the retriever
        retriever = SimpleRetriever(docs=documents)

        # Create a retrieval-based question-answering chain
        qa_chain = RetrievalQA.from_chain_type(
            llm=self.generation_llm,
            retriever=retriever,
            return_source_documents=True
        )

        try:
            result = qa_chain.invoke({"query": question})
            response = result['result']
            source_docs = result['source_documents']
            #logging.info(f"Generated response for question: {question} : {response}")
            return response, source_docs
        except Exception as e:
            logging.error(f"Error during QA chain invocation: {str(e)}")
            raise e

    def generate_summary_v0(self, chunks: any):
        logging.info("Generating summary ...")
        
        # Limit the number of chunks (for example, top 30 chunks)
        limited_chunks = chunks[:30]
        
        # Combine text from the selected chunks
        full_text = "\n".join(chunk['text'] for chunk in limited_chunks)
        text_length = len(full_text)
        logging.info(f"Total text length (characters): {text_length}")
        
        # Define a maximum character limit to fit in a 1024-token context.
        # For many models, roughly 3200 characters is a safe limit.
        MAX_CHAR_LIMIT = 3200
        if text_length > MAX_CHAR_LIMIT:
            logging.warning(f"Input text too long ({text_length} chars), truncating to {MAX_CHAR_LIMIT} chars.")
            full_text = full_text[:MAX_CHAR_LIMIT]
        
        # Define a custom prompt to instruct concise summarization in bullet points.
        custom_prompt_template = """

            You are an expert summarizer. Summarize the following text into a concise summary using bullet points.

            Ensure that the final summary is no longer than 20-30 bullet points and fits within 15-20 lines.

            Focus only on the most critical points.



            Text to summarize:

            {text}



            Summary:

            """
        prompt = PromptTemplate(input_variables=["text"], template=custom_prompt_template)
        
        # Use the 'stuff' chain type to send a single LLM request with our custom prompt.
        chain = load_summarize_chain(self.generation_llm, chain_type="stuff", prompt=prompt)
        
        # Wrap the full text in a single Document object (chain expects a list of Documents)
        docs = [Document(page_content=full_text)]
        
        # Generate the summary
        summary = chain.invoke(docs)
        return summary['output_text']
    
    def generate_questions(self, chunks: any):
        logging.info("Generating sample questions ...")
        
        # Use the top 30 chunks or fewer
        limited_chunks = chunks[:30]
        
        # Combine text from chunks
        full_text = "\n".join(chunk['text'] for chunk in limited_chunks)
        text_length = len(full_text)
        logging.info(f"Total text length for questions: {text_length}")
        
        MAX_CHAR_LIMIT = 3200
        if text_length > MAX_CHAR_LIMIT:
            logging.warning(f"Input text too long ({text_length} chars), truncating to {MAX_CHAR_LIMIT} chars.")
            full_text = full_text[:MAX_CHAR_LIMIT]
        
        # Prompt template for generating questions
        question_prompt_template = """

        You are an AI expert at creating questions from documents.



        Based on the text below, generate not less than 20 insightful and highly relevant sample questions that a user might ask to better understand the content.



        **Instructions:**

        - Questions must be specific to the document's content and context.

        - Avoid generic questions like 'What is this document about?'

        - Do not include numbers, prefixes (e.g., '1.', '2.'), or explanations (e.g., '(Clarifies...)').

        - Each question should be a single, clear sentence ending with a question mark.

        - Focus on key concepts, processes, components, or use cases mentioned in the text.



        Text:

        {text}



        Output format:

        What is the purpose of the Communication Server in Collateral Management?

        How does the system handle data encryption for secure communication?

        ...

        """
        prompt = PromptTemplate(input_variables=["text"], template=question_prompt_template)
        
        chain = load_summarize_chain(self.generation_llm, chain_type="stuff", prompt=prompt)
        docs = [Document(page_content=full_text)]

        try:
            result = chain.invoke(docs)
            question_output = result.get("output_text", "").strip()
            
            # Clean and parse the output into a list of questions
            questions = []
            for line in question_output.split("\n"):
                # Remove any leading/trailing whitespace, numbers, or bullet points
                cleaned_line = line.strip().strip("-*1234567890. ").rstrip(".")
                # Remove any explanation in parentheses
                cleaned_line = cleaned_line.split("(")[0].strip()
                # Ensure the line is a valid question (ends with '?' and is not empty)
                if cleaned_line and cleaned_line.endswith("?"):
                    questions.append(cleaned_line)
            
            # Limit to 10 questions
            questions = questions[:10]
            logging.info(f"Generated questions: {questions}")
            return questions
        except Exception as e:
            logging.error(f"Error generating questions: {e}")
            return []
    
    def generate_summary(self, chunks: Any, toc_text: Any, summary_type: str = "medium") -> str:
        """

        Generate a summary of the document using LangChain's summarization chains.



        Args:

            vector_store_manager: Instance of VectorStoreManager with a FAISS vector store.

            summary_type (str): Type of summary ("small", "medium", "detailed").

            k (int): Number of chunks to retrieve from the vector store.

            include_toc (bool): Whether to include the table of contents (if available).



        Returns:

            str: Generated summary.



        Raises:

            ValueError: If summary_type is invalid or vector store is not initialized.

        """

        # Define chunk retrieval parameters based on summary type
        if summary_type == "small":
            k = min(k, 3)  # Fewer chunks for small summary
            chain_type = "stuff"  # Use stuff for small summaries
            word_count = "50-100"
        elif summary_type == "medium":
            k = min(k, 10)
            chain_type = "map_reduce"  # Use map-reduce for medium summaries
            word_count = "200-400"
        else:  # detailed
            k = min(k, 20)
            chain_type = "map_reduce"  # Use map-reduce for detailed summaries
            word_count = "500-1000"

        # Define prompts
        if chain_type == "stuff":
            prompt = PromptTemplate(
                input_variables=["text"],
                template=(
                    "Generate a {summary_type} summary ({word_count} words) of the following document excerpts. "
                    "Focus on key points and ensure clarity. Stick strictly to the provided text:\n\n"
                    "{toc_prompt}{text}"
                ).format(
                    summary_type=summary_type,
                    word_count=word_count,
                    toc_prompt="Table of Contents:\n{toc_text}\n\n" if toc_text else ""
                )
            )
            chain = load_summarize_chain(
                llm=self.generation_llm,
                chain_type="stuff",
                prompt=prompt
            )
        else:  # map_reduce
            map_prompt = PromptTemplate(
                input_variables=["text"],
                template=(
                    "Summarize the following document excerpt in 1-2 sentences, focusing on key points. "
                    "Consider the document's structure from this table of contents:\n\n"
                    "Table of Contents:\n{toc_text}\n\nExcerpt:\n{text}"
                ).format(toc_text=toc_text if toc_text else "Not provided")
            )
            combine_prompt = PromptTemplate(
                input_variables=["text"],
                template=(
                    "Combine the following summaries into a cohesive {summary_type} summary "
                    "({word_count} words) of the document. Ensure clarity, avoid redundancy, and "
                    "organize by key themes or sections if applicable:\n\n{text}"
                ).format(summary_type=summary_type, word_count=word_count)
            )
            chain = load_summarize_chain(
                llm=self.generation_llm,
                chain_type="map_reduce",
                map_prompt=map_prompt,
                combine_prompt=combine_prompt,
                return_intermediate_steps=False
            )

        # Run the chain
        try:
            logging.info(f"Generating {summary_type} summary with {len(chunks)} chunks")
            summary = chain.run(chunks)
            logging.info(f"{summary_type.capitalize()} summary generated successfully")
            return summary
        except Exception as e:
            logging.error(f"Error generating summary: {str(e)}")
            return f"Error generating summary: {str(e)}"