from flask import Flask,request,render_template,send_file,jsonify import os # from transformers import AutoTokenizer, AutoModel import anvil.server import pathlib import textwrap import import_ipynb from library import call_gpt, call_gemini, compress_bool_list, uncompress_bool_list from background_service import BackgroundTaskService import numpy as np from keys_min import server_uplink print(server_uplink) anvil.server.connect(server_uplink) # from sentence_transformers import SentenceTransformer # from sentence_transformers.util import cos_sim # model = SentenceTransformer('thenlper/gte-large') # model = SentenceTransformer('BAAI/bge-large-en') # @anvil.server.callable # def encode(sentence = None): # vec = model.encode(sentence) # return [float(val) if isinstance(val, (int, float, np.float32)) else 0.0 for val in vec] app=Flask(__name__) MESSAGED={'title':'API Server for ICAPP', 'messageL':['published server functions:','encode_anvil(text)', 'encode(sentence)', 'call_gemini(text,key)','call_gpt(text,key,model)', 'task_id<=launch(func_name,*args)','poll(task_id)']} # tokenizer = AutoTokenizer.from_pretrained('allenai/specter') # encoder = AutoModel.from_pretrained('allenai/specter') anvil.server.callable(call_gpt) anvil.server.callable(call_gemini) anvil.server.callable(compress_bool_list) anvil.server.callable(uncompress_bool_list) service=BackgroundTaskService(max_tasks=10) service.register(call_gpt) service.register(call_gemini) @anvil.server.callable def launch(func_name,*args): global service # Launch task task_id = service.launch_task(func_name, *args) print(f"Task launched with ID: {task_id}") return task_id @anvil.server.callable def poll(task_id): global service # Poll for completion; if not complete return "In Progress" else return result result = service.get_result(task_id) if result=='No such task': return str(result) elif result!='In Progress': del service.results[task_id] if isinstance(result, (int, float, str, list, dict, tuple)): return result else: print(str(result)) return str(result) else: return str(result) # @anvil.server.callable # def encode_anvil(text): # inputs = tokenizer(text, padding=True, truncation=True, # return_tensors="pt", max_length=512) # result = encoder(**inputs) # embeddings = result.last_hidden_state[:, 0, :] # emb_array = embeddings.detach().numpy() # embedding=emb_array.tolist() # return embedding @anvil.server.callable def reset_service(): global call_gpt, call_gemini, service service=BackgroundTaskService(max_tasks=10) service.register(call_gpt) service.register(call_gemini) @anvil.server.callable def print_results_table(): global service return(service.results) # @app.route('/encode',methods=['GET','POST']) # def encode(): # print(request) # if request.method=='GET': # text=request.args.get('text') # elif request.method=='POST': # data=request.get_json() # if 'text' in data: text=data["text"] # if text=='' or text is None: return -1 # inputs = tokenizer(text, padding=True, truncation=True, # return_tensors="pt", max_length=512) # result = encoder(**inputs) # embeddings = result.last_hidden_state[:, 0, :] # emb_array = embeddings.detach().numpy() # embedding=emb_array.tolist() # return jsonify({'embedding': embedding}) @app.route('/',methods=['GET', 'POST']) def home(): return render_template('home.html',messageD=MESSAGED) if __name__=='__main__': app.run(host="0.0.0.0", port=7860)