gizemsarsinlar commited on
Commit
acaccf4
·
verified ·
1 Parent(s): 7b59d3f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +41 -35
app.py CHANGED
@@ -4,77 +4,84 @@ from transformers import AutoModelForCausalLM, AutoProcessor
4
  import torch
5
  from PIL import Image
6
  import subprocess
7
- # Ensure flash-attn is installed but skip CUDA build (to avoid 'flash_attn_2_cuda' error)
 
8
  subprocess.run(
9
- 'pip install flash-attn --no-build-isolation',
10
- env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
11
  shell=True
12
  )
13
 
14
- models = {
15
- "microsoft/Phi-3.5-vision-instruct": AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True, torch_dtype="auto", _attn_implementation="flash_attention_2").cuda().eval()
16
-
17
- }
18
-
19
- processors = {
20
- "microsoft/Phi-3.5-vision-instruct": AutoProcessor.from_pretrained("microsoft/Phi-3.5-vision-instruct", trust_remote_code=True)
21
- }
22
-
23
- kwargs = {}
24
- kwargs['torch_dtype'] = torch.bfloat16
25
-
26
  user_prompt = '<|user|>\n'
27
  assistant_prompt = '<|assistant|>\n'
28
  prompt_suffix = "<|end|>\n"
29
 
30
- @spaces.GPU
31
- def run_example(image, text_input=None, model_id="microsoft/Phi-3.5-vision-instruct"):
32
- model = models[model_id]
33
- processor = processors[model_id]
 
 
 
 
 
 
 
 
 
 
34
 
 
 
 
35
  prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
36
  image = Image.fromarray(image).convert("RGB")
37
 
38
  inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
39
- generate_ids = model.generate(**inputs,
40
- max_new_tokens=1000,
41
- eos_token_id=processor.tokenizer.eos_token_id,
42
- )
 
43
  generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
44
- response = processor.batch_decode(generate_ids,
45
- skip_special_tokens=True,
46
- clean_up_tokenization_spaces=False)[0]
 
 
47
  return response
48
 
49
  css = """
50
  #output {
51
- height: 500px;
52
- overflow: auto;
53
- border: 1px solid #ccc;
54
  }
55
  """
56
 
57
  with gr.Blocks(css=css) as demo:
58
  gr.Markdown("## Phi-3.5 Vision Instruct Demo with Example Inputs")
59
-
60
  with gr.Tab(label="Phi-3.5 Input"):
61
  with gr.Row():
62
  with gr.Column():
63
  input_img = gr.Image(label="Input Picture")
64
- model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="microsoft/Phi-3.5-vision-instruct")
 
 
 
 
65
  text_input = gr.Textbox(label="Question")
66
  submit_btn = gr.Button(value="Submit")
67
  with gr.Column():
68
  output_text = gr.Textbox(label="Output Text")
69
 
70
- # Example images and text
71
  examples = [
72
  ["image1.jpeg", "What does this painting tell us explain in detail?"],
73
  ["image2.jpg", "What does this painting tell us explain in detail?"],
74
  ["image3.jpg", "Describe the scene in this picture."]
75
  ]
76
 
77
- # Adding Examples
78
  gr.Examples(
79
  examples=examples,
80
  inputs=[input_img, text_input],
@@ -83,6 +90,5 @@ with gr.Blocks(css=css) as demo:
83
 
84
  submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])
85
 
86
- # Launch the demo
87
  demo.queue(api_open=False)
88
- demo.launch(debug=True, show_api=False)
 
4
  import torch
5
  from PIL import Image
6
  import subprocess
7
+
8
+ # Install flash-attn but skip CUDA build (to avoid 'flash_attn_2_cuda' error)
9
  subprocess.run(
10
+ 'pip install flash-attn --no-build-isolation',
11
+ env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
12
  shell=True
13
  )
14
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  user_prompt = '<|user|>\n'
16
  assistant_prompt = '<|assistant|>\n'
17
  prompt_suffix = "<|end|>\n"
18
 
19
+ model_name = "microsoft/Phi-3.5-vision-instruct"
20
+
21
+ # Lazy-load the model and processor at runtime
22
+ def get_model_and_processor(model_id):
23
+ model = AutoModelForCausalLM.from_pretrained(
24
+ model_id,
25
+ trust_remote_code=True,
26
+ torch_dtype=torch.bfloat16 # safer than 'auto'
27
+ ).cuda().eval()
28
+ processor = AutoProcessor.from_pretrained(
29
+ model_id,
30
+ trust_remote_code=True
31
+ )
32
+ return model, processor
33
 
34
+ @spaces.GPU
35
+ def run_example(image, text_input=None, model_id=model_name):
36
+ model, processor = get_model_and_processor(model_id)
37
  prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}"
38
  image = Image.fromarray(image).convert("RGB")
39
 
40
  inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
41
+ generate_ids = model.generate(
42
+ **inputs,
43
+ max_new_tokens=1000,
44
+ eos_token_id=processor.tokenizer.eos_token_id
45
+ )
46
  generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
47
+ response = processor.batch_decode(
48
+ generate_ids,
49
+ skip_special_tokens=True,
50
+ clean_up_tokenization_spaces=False
51
+ )[0]
52
  return response
53
 
54
  css = """
55
  #output {
56
+ height: 500px;
57
+ overflow: auto;
58
+ border: 1px solid #ccc;
59
  }
60
  """
61
 
62
  with gr.Blocks(css=css) as demo:
63
  gr.Markdown("## Phi-3.5 Vision Instruct Demo with Example Inputs")
64
+
65
  with gr.Tab(label="Phi-3.5 Input"):
66
  with gr.Row():
67
  with gr.Column():
68
  input_img = gr.Image(label="Input Picture")
69
+ model_selector = gr.Dropdown(
70
+ choices=[model_name],
71
+ label="Model",
72
+ value=model_name
73
+ )
74
  text_input = gr.Textbox(label="Question")
75
  submit_btn = gr.Button(value="Submit")
76
  with gr.Column():
77
  output_text = gr.Textbox(label="Output Text")
78
 
 
79
  examples = [
80
  ["image1.jpeg", "What does this painting tell us explain in detail?"],
81
  ["image2.jpg", "What does this painting tell us explain in detail?"],
82
  ["image3.jpg", "Describe the scene in this picture."]
83
  ]
84
 
 
85
  gr.Examples(
86
  examples=examples,
87
  inputs=[input_img, text_input],
 
90
 
91
  submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text])
92
 
 
93
  demo.queue(api_open=False)
94
+ demo.launch(debug=True, show_api=False)