Spaces:
Runtime error
Runtime error
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoProcessor | |
import torch | |
from PIL import Image | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
user_prompt = '<|user|>\n' | |
assistant_prompt = '<|assistant|>\n' | |
prompt_suffix = "<|end|>\n" | |
model_name = "microsoft/Phi-3.5-vision-instruct" | |
# Lazy-load the model and processor at runtime | |
def get_model_and_processor(model_id): | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
trust_remote_code=True, | |
torch_dtype=torch.bfloat16 # safer than 'auto' | |
).cuda().eval() | |
processor = AutoProcessor.from_pretrained( | |
model_id, | |
trust_remote_code=True | |
) | |
return model, processor | |
def run_example(image, text_input=None, model_id=model_name): | |
model, processor = get_model_and_processor(model_id) | |
prompt = f"{user_prompt}<|image_1|>\n{text_input}{prompt_suffix}{assistant_prompt}" | |
image = Image.fromarray(image).convert("RGB") | |
inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") | |
generate_ids = model.generate( | |
**inputs, | |
max_new_tokens=1000, | |
eos_token_id=processor.tokenizer.eos_token_id | |
) | |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] | |
response = processor.batch_decode( | |
generate_ids, | |
skip_special_tokens=True, | |
clean_up_tokenization_spaces=False | |
)[0] | |
return response | |
css = """ | |
#output { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown("## Phi-3.5 Vision Instruct Demo with Example Inputs") | |
with gr.Tab(label="Phi-3.5 Input"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Picture") | |
model_selector = gr.Dropdown( | |
choices=[model_name], | |
label="Model", | |
value=model_name | |
) | |
text_input = gr.Textbox(label="Question") | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output Text") | |
examples = [ | |
["image1.jpeg", "What does this painting tell us explain in detail?"], | |
["image2.jpg", "What does this painting tell us explain in detail?"], | |
["image3.jpg", "Describe the scene in this picture."] | |
] | |
gr.Examples( | |
examples=examples, | |
inputs=[input_img, text_input], | |
examples_per_page=3 | |
) | |
submit_btn.click(run_example, [input_img, text_input, model_selector], [output_text]) | |
demo.queue() | |
demo.launch() |