import streamlit as st import io from contextlib import redirect_stdout from dataloader import main as dtLoader from evalue import main2 as run_eval def main(): st.title("RGB Evaluation Tool") st.subheader('Load Sample data') sampleset = st.text_input("Sample data (e.g., en, en_int):", "en") if st.button("Load Samples"): st.write("loading samples...") dataargs = ["--dataset", sampleset] print('Samples loading.....') ff = io.StringIO() with redirect_stdout(ff): dtLoader(dataargs) out1 = ff.getvalue() st.text_area("Execution Output", out1, height=300, disabled=True) st.success("Samples loading. completed!") st.subheader('Evaluation') dataset = st.text_input("Dataset name (e.g., en, en_int):", "en") model = st.text_input("Model name:", "groq") plm = st.text_input("Plm:", "moonshotai/kimi-k2-instruct") temp = st.slider("Temp", 0.0, 1.0, 0.2) noise = st.slider("Noise Rate", 0.0, 1.0, 0.6) passsage_num = st.slider("Passage Num", 0, 10, 5) correct_rate = st.slider("Correct Rate", 0.0, 1.0, 1.0) if st.button("Run Evaluation"): args = ["--dataset", dataset, "--modelname", model, "--plm", plm, "--temp", str(temp), "--noise_rate", str(noise), "--passage_num", str(passsage_num), "--correct_rate", str(correct_rate)] st.write("Running evaluation...") f = io.StringIO() with redirect_stdout(f): run_eval(args) output = f.getvalue() st.text_area("Execution Output", output, height=300, disabled=True) st.success("Evaluation completed!") if __name__ == "__main__": main()