File size: 9,861 Bytes
3229aff
 
 
7db58d4
3229aff
7db58d4
3229aff
7db58d4
 
 
3229aff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7db58d4
 
 
3229aff
7db58d4
 
3229aff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7db58d4
 
3229aff
 
 
 
 
 
 
7db58d4
3229aff
 
 
 
 
 
 
 
 
 
 
 
7db58d4
3229aff
 
7db58d4
3229aff
 
 
7db58d4
3229aff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7db58d4
 
3229aff
7db58d4
3229aff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93a695d
7db58d4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import json
import numpy as np
import random, math
import argparse
import os
import json, tqdm
import yaml
from models.models import GroqModel
import time
import random

def processdata(instance, noise_rate, passage_num, filename, correct_rate = 0):
    query = instance['query']
    ans = instance['answer']

    neg_num = math.ceil(passage_num * noise_rate)
    pos_num = passage_num - neg_num

    if '_int' in filename:
        for i in instance['positive']:
            random.shuffle(i)
        print(len(instance['positive']))
        docs = [i[0] for i in instance['positive']]
        if len(docs) < pos_num:
            maxnum = max([len(i) for i in instance['positive']])
            for i in range(1,maxnum):
                for j in instance['positive']:
                    if len(j) > i:
                        docs.append(j[i])
                        if len(docs) == pos_num:
                            break
                if len(docs) == pos_num:
                    break
        neg_num = passage_num - len(docs)
        if neg_num > 0:
            negative = instance['negative'][:neg_num]
            docs += negative
    elif '_fact' in filename:
        correct_num = math.ceil(passage_num * correct_rate)
        pos_num = passage_num - neg_num - correct_num
        indexs = list(range(len(instance['positive'])))
        selected = random.sample(indexs,min(len(indexs),pos_num))
        docs = [instance['positive_wrong'][i] for i in selected]
        remain = [i for i in indexs if i not in selected]
        if correct_num > 0 and len(remain) > 0:
            docs += [instance['positive'][i] for i in random.sample(remain,min(len(remain),correct_num))]
        if neg_num > 0:
            docs += instance['negative'][:neg_num]
    else:
        if noise_rate == 1:
            neg_num = passage_num
            pos_num = 0
        else:
            if neg_num > len(instance['negative']):
                neg_num = len(instance['negative'])
                pos_num = passage_num - neg_num
            elif pos_num > len(instance['positive']):
                pos_num = len(instance['positive'])
                neg_num = passage_num - pos_num
        

        positive = instance['positive'][:pos_num]
        negative = instance['negative'][:neg_num]

        docs = positive + negative

    random.shuffle(docs)
    
    return query, ans, docs


def checkanswer(prediction, ground_truth):
    prediction = prediction.lower()
    if type(ground_truth) is not list:
        ground_truth = [ground_truth]
    labels = []
    for instance in ground_truth:
        flag = True
        if type(instance)  == list:
            flag = False 
            instance = [i.lower() for i in instance]
            for i in instance:
                if i in prediction:
                    flag = True
                    break
        else:
            instance = instance.lower()
            if instance not in prediction:
                flag = False
        labels.append(int(flag))
    return labels

def getevalue(results):
    results = np.array(results)
    results = np.max(results,axis = 0)
    if 0 in results:
        return False
    else:
        return True
            

def predict(query, ground_truth, docs, model, system, instruction, temperature, dataset):

    '''
    label: 0 for positive, 1 for negative, -1 for not enough information

    '''
    if len(docs) == 0:
        text = instruction.format(QUERY=query, DOCS='')
        prediction = model.generate(text, temperature)

    else:
        docs = '\n'.join(docs)
        text = instruction.format(QUERY=query, DOCS=docs)
        prediction = model.generate(text, temperature, system)

    if 'zh' in dataset:
        prediction = prediction.replace(" ","")
    if '信息不足' in prediction or 'insufficient information' in prediction:
        labels = [-1]
    else:
        labels = checkanswer(prediction, ground_truth)
    factlabel = 0

    if '事实性错误' in prediction or 'factual errors' in prediction:
        factlabel = 1

    return labels,prediction, factlabel

def main3(args):
    print(args)
    return 'I am from evalue'

def main2(params):
    print(' am main2')
    parser = argparse.ArgumentParser()

    parser.add_argument(
        '--modelname', type=str, default='chatgpt',
        help='model name'
    )
    parser.add_argument(
        '--dataset', type=str, default='en',
        help='evaluetion dataset',
        choices=['en','zh','en_int','zh_int','en_fact','zh_fact']
    )
    parser.add_argument(
        '--api_key', type=str, default='api_key',
        help='api key of chatgpt'
    )
    parser.add_argument(
        '--plm', type=str, default='THUDM/chatglm-6b',
        help='name of plm'
    )
    parser.add_argument(
        '--url', type=str, default='https://api.openai.com/v1/completions',
        help='url of chatgpt'
    )
    parser.add_argument(
        '--temp', type=float, default=0.7,
        help='corpus id'
    )
    parser.add_argument(
        '--noise_rate', type=float, default=0.0,
        help='rate of noisy passages'
    )
    parser.add_argument(
        '--correct_rate', type=float, default=0.0,
        help='rate of correct passages'
    )
    parser.add_argument(
        '--passage_num', type=int, default=5,
        help='number of external passages'
    )
    parser.add_argument(
        '--factchecking', type=bool, default=False,
        help='whether to fact checking'
    )
    parser.add_argument(
        '--max_instances', type=int, default=None,
        help='Limit the number of examples to evaluate'
    )
    help='whether to fact checking'
    
    args = parser.parse_args(params)


    modelname = args.modelname
    temperature = args.temp
    noise_rate = args.noise_rate
    passage_num = args.passage_num

    instances = []
    with open(f'data/{args.dataset}.json','r', encoding='utf-8') as f:
        for i, line in enumerate(f):
            if args.max_instances and i >= args.max_instances:
                break
            instances.append(json.loads(line))
    if 'en' in args.dataset:
        resultpath = 'result-en'
    elif 'zh' in args.dataset:
        resultpath = 'result-zh'
    if not os.path.exists(resultpath):
        os.mkdir(resultpath)

    if args.factchecking:
        prompt = yaml.load(open('config/instruction_fact.yaml', 'r', encoding='utf-8'), Loader=yaml.FullLoader)[args.dataset[:2]]
        resultpath = resultpath + '/fact'
    else:
        prompt = yaml.load(open('config/instruction.yaml', 'r', encoding='utf-8'), Loader=yaml.FullLoader)[args.dataset[:2]]

    system = prompt['system']
    instruction = prompt['instruction']
    model = GroqModel()
    

    filename = f'{resultpath}/prediction_{args.dataset}_{modelname}_temp{temperature}_noise{noise_rate}_passage{passage_num}_correct{args.correct_rate}.json'
    useddata = {}
    if os.path.exists(filename):
        with open(filename) as f:
                data = json.loads(line)
                useddata[data['id']] = data
  
    results = []
    with open(filename,'w') as f:
        for instance in tqdm.tqdm(instances):
            #if instance['id'] in useddata and instance['query'] == useddata[instance['id']]['query'] and instance['answer']  == useddata[instance['id']]['answer']:
                #results.append(useddata[instance['id']])
                #f.write(json.dumps(useddata[instance['id']], ensure_ascii=False)+'\n')
                #continue
            try:
                random.seed(2333)
                if passage_num == 0:
                    query = instance['query']
                    ans = instance['answer']
                    docs = []
                else:
                    query, ans, docs = processdata(instance, noise_rate, passage_num, args.dataset, args.correct_rate)
                label,prediction,factlabel = predict(query, ans, docs, model,system,instruction,temperature,args.dataset)
                
                instance['label'] = label
                newinstance = {
                    'id': instance['id'],
                    'query': query,
                    'ans': ans,
                    'label': [-1],
                    'label1': label,
                    'prediction': prediction,
                    'docs': docs,
                    'noise_rate': noise_rate,
                    'factlabel': factlabel
                }
                results.append(newinstance)
                f.write(json.dumps(newinstance, ensure_ascii=False)+'\n')
                time.sleep(random.uniform(2, 4))

            except Exception as e:
                print("Error123:", e)
                continue
    tt = 0
    for i in results:
        label = i['label']
        if noise_rate == 1 and label[0] == -1:
            tt += 1
        elif 0 not in label and 1 in label:
            tt += 1
    scores = {
    'all_rate': (tt)/len(results),
    'noise_rate': noise_rate,
    'tt':tt,
    'nums': len(results),
    }
    if '_fact' in args.dataset:
        fact_tt = 0
        correct_tt = 0
        for i in results:
            if i['factlabel'] == 1:
                fact_tt += 1
                if 0 not in i['label']:
                    correct_tt += 1
        fact_check_rate = fact_tt/len(results)
        if fact_tt > 0:
            correct_rate = correct_tt/fact_tt
        else:
            correct_rate = 0
        scores['fact_check_rate'] = fact_check_rate
        scores['correct_rate'] = correct_rate
        scores['fact_tt'] = fact_tt
        scores['correct_tt'] = correct_tt

    
    print(scores)
    json.dump(scores,open(f'{resultpath}/prediction_{args.dataset}_{modelname}_temp{temperature}_noise{noise_rate}_passage{passage_num}_correct{args.correct_rate}_result.json','w'),ensure_ascii=False,indent=4)

# if __name__ == '__main__':
#     # main()
#     print('test me here')