Spaces:
Runtime error
Runtime error
app.py
CHANGED
|
@@ -15,7 +15,7 @@ st.set_page_config(
|
|
| 15 |
|
| 16 |
st.title('T5-VAE πππ')
|
| 17 |
|
| 18 |
-
st.
|
| 19 |
This is a variational autoencoder trained on text.
|
| 20 |
|
| 21 |
It allows interpolating on text at a high level, try it out!
|
|
@@ -23,7 +23,7 @@ It allows interpolating on text at a high level, try it out!
|
|
| 23 |
See how it works [here](http://fras.uk/ml/large%20prior-free%20models/transformer-vae/2020/08/13/Transformers-as-Variational-Autoencoders.html).
|
| 24 |
''')
|
| 25 |
|
| 26 |
-
st.
|
| 27 |
### t5-vae-python
|
| 28 |
|
| 29 |
This model is trained on lines of Python code from GitHub ([dataset](https://huggingface.co/datasets/Fraser/python-lines).
|
|
@@ -111,7 +111,7 @@ def decode(cnt, ratio, txt_1, txt_2):
|
|
| 111 |
|
| 112 |
in_1 = st.text_input("A line of Python code.", "x = a - 1")
|
| 113 |
in_2 = st.text_input("Another line of Python code.", "x = a + 10 * 2")
|
| 114 |
-
r = st.slider('Interpolation Ratio', min_value=0.0, max_value=1.0, value=0.5)
|
| 115 |
container = st.empty()
|
| 116 |
container.write('Loading...')
|
| 117 |
out = decode(container, r, in_1, in_2)
|
|
@@ -119,7 +119,7 @@ container.empty()
|
|
| 119 |
st.write(out)
|
| 120 |
|
| 121 |
|
| 122 |
-
st.
|
| 123 |
### t5-vae-wiki
|
| 124 |
|
| 125 |
This model is trained on just 5% of the sentences on wikipedia.
|
|
@@ -141,7 +141,7 @@ model, tokenizer = get_wiki_model()
|
|
| 141 |
|
| 142 |
in_1 = st.text_input("A sentence.", "Children are looking for the water to be clear.")
|
| 143 |
in_2 = st.text_input("Another sentence.", "There are two people playing soccer.")
|
| 144 |
-
r = st.slider('Interpolation Ratio', min_value=0.0, max_value=1.0, value=0.5)
|
| 145 |
container = st.empty()
|
| 146 |
container.write('Loading...')
|
| 147 |
out = decode(r, in_1, in_2)
|
|
@@ -149,7 +149,7 @@ container.empty()
|
|
| 149 |
st.write(out)
|
| 150 |
|
| 151 |
|
| 152 |
-
st.
|
| 153 |
Try arithmetic in latent space.
|
| 154 |
|
| 155 |
Here latent codes for each sentence are found and arithmetic is done with them.
|
|
@@ -173,7 +173,7 @@ in_a = st.text_input("A", "Children are looking for the water to be clear.")
|
|
| 173 |
in_b = st.text_input("B", "There are two people playing soccer.")
|
| 174 |
in_c = st.text_input("C", "Children are looking for the water to be clear.")
|
| 175 |
|
| 176 |
-
st.
|
| 177 |
A is to B as C is to...
|
| 178 |
''')
|
| 179 |
container = st.empty()
|
|
|
|
| 15 |
|
| 16 |
st.title('T5-VAE πππ')
|
| 17 |
|
| 18 |
+
st.markdown('''
|
| 19 |
This is a variational autoencoder trained on text.
|
| 20 |
|
| 21 |
It allows interpolating on text at a high level, try it out!
|
|
|
|
| 23 |
See how it works [here](http://fras.uk/ml/large%20prior-free%20models/transformer-vae/2020/08/13/Transformers-as-Variational-Autoencoders.html).
|
| 24 |
''')
|
| 25 |
|
| 26 |
+
st.markdown('''
|
| 27 |
### t5-vae-python
|
| 28 |
|
| 29 |
This model is trained on lines of Python code from GitHub ([dataset](https://huggingface.co/datasets/Fraser/python-lines).
|
|
|
|
| 111 |
|
| 112 |
in_1 = st.text_input("A line of Python code.", "x = a - 1")
|
| 113 |
in_2 = st.text_input("Another line of Python code.", "x = a + 10 * 2")
|
| 114 |
+
r = st.slider('Python Interpolation Ratio', min_value=0.0, max_value=1.0, value=0.5)
|
| 115 |
container = st.empty()
|
| 116 |
container.write('Loading...')
|
| 117 |
out = decode(container, r, in_1, in_2)
|
|
|
|
| 119 |
st.write(out)
|
| 120 |
|
| 121 |
|
| 122 |
+
st.markdown('''
|
| 123 |
### t5-vae-wiki
|
| 124 |
|
| 125 |
This model is trained on just 5% of the sentences on wikipedia.
|
|
|
|
| 141 |
|
| 142 |
in_1 = st.text_input("A sentence.", "Children are looking for the water to be clear.")
|
| 143 |
in_2 = st.text_input("Another sentence.", "There are two people playing soccer.")
|
| 144 |
+
r = st.slider('English Interpolation Ratio', min_value=0.0, max_value=1.0, value=0.5)
|
| 145 |
container = st.empty()
|
| 146 |
container.write('Loading...')
|
| 147 |
out = decode(r, in_1, in_2)
|
|
|
|
| 149 |
st.write(out)
|
| 150 |
|
| 151 |
|
| 152 |
+
st.markdown('''
|
| 153 |
Try arithmetic in latent space.
|
| 154 |
|
| 155 |
Here latent codes for each sentence are found and arithmetic is done with them.
|
|
|
|
| 173 |
in_b = st.text_input("B", "There are two people playing soccer.")
|
| 174 |
in_c = st.text_input("C", "Children are looking for the water to be clear.")
|
| 175 |
|
| 176 |
+
st.markdown('''
|
| 177 |
A is to B as C is to...
|
| 178 |
''')
|
| 179 |
container = st.empty()
|