import gradio as gr import re import subprocess import time import select from tqdm import tqdm from huggingface_hub import snapshot_download #Download model snapshot_download( repo_id = "Wan-AI/Wan2.1-T2V-1.3B", local_dir = "./Wan2.1-T2V-1.3B" ) def infer(prompt, progress=gr.Progress(track_tqdm=True)): # Configuration: total_process_steps = 11 # Total steps (including irrelevant ones) irrelevant_steps = 4 # First 4 INFO messages are skipped relevant_steps = total_process_steps - irrelevant_steps # 7 overall steps # Create overall progress bar (level 1) overall_bar = tqdm(total=relevant_steps, desc="Overall Process", position=1, ncols=120, dynamic_ncols=False, leave=True) processed_steps = 0 # Regex for video generation progress (level 3) progress_pattern = re.compile(r"(\d+)%\|.*\| (\d+)/(\d+)") video_progress_bar = None # Variables for sub-step progress bar (level 2) sub_bar = None sub_time_elapsed = 0 # seconds elapsed for the current sub-step video_phase = False # flag indicating video generation phase command = [ "python", "-u", "-m", "generate", # -u: unbuffered output "--task", "t2v-1.3B", "--size", "832*480", "--ckpt_dir", "./Wan2.1-T2V-1.3B", "--sample_shift", "8", "--sample_guide_scale", "6", "--prompt", prompt, "--save_file", "generated_video.mp4" ] process = subprocess.Popen(command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True, bufsize=1) # Poll the process's stdout in a loop. while True: # Wait up to 1 second for data. rlist, _, _ = select.select([process.stdout], [], [], 1) if rlist: # New line is available. line = process.stdout.readline() if not line: break stripped_line = line.strip() if not stripped_line: continue # Check if line matches video generation progress. progress_match = progress_pattern.search(stripped_line) if progress_match: # Enter video phase: if a sub-step is active, finish it. if sub_bar is not None: if sub_time_elapsed < 20: sub_bar.update(20 - sub_time_elapsed) sub_bar.close() overall_bar.update(1) overall_bar.refresh() sub_bar = None sub_time_elapsed = 0 video_phase = True current = int(progress_match.group(2)) total = int(progress_match.group(3)) if video_progress_bar is None: video_progress_bar = tqdm(total=total, desc="Video Generation", position=0, ncols=120, dynamic_ncols=True, leave=True) video_progress_bar.update(current - video_progress_bar.n) video_progress_bar.refresh() # When video progress is complete, finish the video phase. if video_progress_bar.n >= video_progress_bar.total: video_phase = False overall_bar.update(1) overall_bar.refresh() video_progress_bar.close() video_progress_bar = None continue # Process INFO messages. if "INFO:" in stripped_line: parts = stripped_line.split("INFO:", 1) msg = parts[1].strip() if len(parts) > 1 else "" # Print the log line. print(stripped_line) if processed_steps < irrelevant_steps: processed_steps += 1 else: # If we're in video phase, ignore new INFO messages. if video_phase: continue # If a sub-step is already active, finish it. if sub_bar is not None: if sub_time_elapsed < 20: sub_bar.update(20 - sub_time_elapsed) sub_bar.close() overall_bar.update(1) overall_bar.refresh() sub_bar = None sub_time_elapsed = 0 # Start a new sub-step progress bar. sub_bar = tqdm(total=20, desc=msg, position=2, ncols=120, dynamic_ncols=False, leave=True) sub_time_elapsed = 0 continue else: print(stripped_line) else: # No new data for 1 second. if sub_bar is not None: sub_bar.update(1) sub_time_elapsed += 1 sub_bar.refresh() if sub_time_elapsed >= 20: # Complete this sub-step. sub_bar.close() overall_bar.update(1) overall_bar.refresh() sub_bar = None sub_time_elapsed = 0 # Exit loop if the process is finished. if process.poll() is not None: break # Drain any remaining output. for line in process.stdout: print(line.strip()) process.wait() if video_progress_bar is not None: video_progress_bar.close() if sub_bar is not None: sub_bar.close() overall_bar.close() if process.returncode == 0: print("Command executed successfully.") return "generated_video.mp4" else: print("Error executing command.") raise Exception("Error executing command") with gr.Blocks() as demo: with gr.Column(): gr.Markdown("# Wan 2.1") prompt = gr.Textbox(label="Prompt") submit_btn = gr.Button("Submit") video_res = gr.Video(label="Generated Video") submit_btn.click( fn = infer, inputs = [prompt], outputs = [video_res] ) demo.queue().launch(show_error=True, show_api=False, ssr_mode=False)