import re import pandas as pd from datasets_.util import _get_dataset_config_names, _load_dataset from langcodes import Language, standardize_tag slug = "openlanguagedata/flores_plus" splits = _get_dataset_config_names(slug) splits.remove("default") def flores_sentences(language) -> pd.DataFrame | None: if language.flores_path not in splits: return None return _load_dataset(slug, subset=language.flores_path, split="dev").to_pandas() def aggregate_flores_paths(flores_paths): # takes a list of paths from the same language but different scripts # returns the one with the largest writing population if len(flores_paths) == 1: return flores_paths.values[0] populations = [ Language.get(standardize_tag(x, macro=True)).writing_population() for x in flores_paths.values ] return flores_paths.values[populations.index(max(populations))] flores = pd.DataFrame(splits, columns=["flores_path"]) flores["bcp_47"] = flores["flores_path"].apply( lambda x: standardize_tag(x, macro=True), ) # ignore script (language is language) flores["bcp_47"] = flores["bcp_47"].apply( lambda x: re.sub(r"-[A-Z][a-z0-9\-]+$", "", x) ) flores = ( flores.groupby("bcp_47").agg({"flores_path": aggregate_flores_paths}).reset_index() )